
Microcontroller Interfacing Lab
ECE 3720

1Dillon Todd - Summer 2020

Syllabus

• Course objective: Learn about the functionality and modules of a microcontroller, and how to use it to
interface with various devices.

• Pre-Labs: wiring diagram for upcoming lab

• Post-Labs: follow outline provided on Canvas

• Quizzes: cover material from preceding lab and upcoming lab
• Of the three weekly assignments, this should be done last

• Final design project: come up with a design that incorporates elements of multiple previous labs
• More details will be provided closer to the end of the semester

2

These three assignments will be
due before each lab.

Grade Distribution

Post-Lab Reports 40%

Pre-Labs 5%

Lab Completion 15%

Quizzes 15%

Design Project 25%

Equipment

3

ChipKIT Cmod
• Contains a PIC32MX150F128D microcontroller
• Allows easy access to microcontroller’s pins

ChipKIT PGM
• Allows programming of the MC with MPLAB X IDE

NI-Elvis II or Analog Discovery 2 (AD2)
• Multi-function instruments
• Will be used to supply power, inputs, and outputs for the MC

Software Development Environment

MPLAB X will be used to write and compile code,
and load the executable onto the microcontroller

4

MPLAB X user’s guide, pg. 7

Documentation

5

PIC32 Datasheet
For information about the modules
and registers of the microcontrollers

Cmod Reference Manual
For pinout diagram, power info, and
other details about the board

Other Datasheets
Describe pinout and behavior of the
devices used in each lab

Lab 1: Intro
ECE 3720

6

Lab 1 Program

• Navigate to the Lab 1 module in Canvas and
download Lab1.X.zip

• Extract the Lab1.X project folder to your profile.

• Open MPLAB X, then click File > Open Project…
and select and open the project.

• Under the Projects tab on the left side of the
screen, expand Lab1 and Source Files. You
should see main.c. Double-click on it to open it.

• Observe how this program counts from 0 to 15,
outputting the value on Port B

• Lab 2 will cover the details of how this works.

7

Programming the Microcontroller

• Click the hammer icon () to build the program.
• You will see warnings in the output window about outdated libraries. You can ignore these.

• Look for the green Build Successful.

• Connect the Cmod to the PGM (see below) and plug the PGM into your computer’s USB port.

• To load the program onto the microcontroller, click Make and Program Device ().
• If asked to choose a device, look for the chipKIT device at the bottom of the list.

• Watch the output window to see when the process is complete (it may take a while the first time).

• Notice that the program is built as part of this process.

8

The arrow on the PGM should be
closer to the side of the Cmod with
this 1 label.

Lab 1 Wiring

• Power (5-12V) should be supplied to pin 1 of the Cmod,
labeled VIN

• Pins 39 and 40 should always be grounded.

• Pins 20-23 should be connected to LEDs to display the
output.

• These pins correspond to the 4 least-significant bits of Port B

9

Note that you will not be given the wiring for future labs. The slides
will provide a simple diagram showing the inputs and outputs, and
you will have to submit a more detailed diagram as your pre-lab.

Lab 1 Modification

Once you have the program running on your microcontroller, attempt the following:

• Modify the code to count backwards, looping from 0 back up to 15.

• Modify delay to take a longer or shorter period of time.

10

Lab 2: Application of a Digital Latch
ECE 3720

1

Preview

The microcontroller will read two digital inputs and output those same values to a latch. When a button is
pressed, the latch outputs will be updated to mirror the inputs. The states of the latch’s inputs and outputs will
be indicated by LEDs.

2

Topic Slide

Latches vs Flip-Flops 3

SN74LS373 4

I/O Registers (TRIS, LAT, PORT, ANSEL) 5

Push Buttons 9

Pull-Up and Pull-Down Resistors 10

Active-Low vs Active-High 11

DIO 12

Voltages 13

Creating a new MPLAB project 14

Lab Goals 18

Latches vs Flip-Flops

3

• Both latches and flip-flops are storage elements for holding a binary state.

• Latches are level-sensitive, while flip-flops are edge-sensitive.

D Latch D Flip-Flop

• While En is HIGH, Q mirrors D.
• When En is LOW, Q remains constant.
• This is what will be used in this lab.

• Q updates to match D on rising edge of CLK.
• Consists of two D latches
• Useful for sequential circuits, since it will only

update at the times determined by the clock.

SN74LS373

• Datasheet available here

• Notice that this datasheet covers multiple devices,
including both latches and flip-flops.

• Use the datasheet to learn the behavior and pinout of
the SN74LS373

• Notice that the pins are arranged in a Q-D-D-Q-Q… pattern

4

SN74LS373 datasheet, pg. 1

SN74LS373 datasheet, pg. 3

We use this

Not this

Output updates as
long as C is HIGH

Output updates on
rising edge of CLK

https://www.ti.com/lit/ds/symlink/sn74ls373.pdf

Registers

• Every lab in this class will involve setting the values of the
PIC32’s registers to achieve the desired behavior.

• In particular, the I/O registers detailed in the following slides will be some of
the first things to consider for each lab.

• Register names refer to memory locations, defined through plib.h.

• Xbits functionality
• Type “bits.” after a register name in MPLAB to see a list of individual bits

from that register.

• This is often preferable, since it improves readability and lets you address
individual bits, leaving the others unchanged.

5

PIC32 datasheet, pg. 144

Data Direction

• Use TRISx registers to designate pins as inputs or outputs.
• where x is A, B, or C

• TRIS is short for “Tri-State”

• Set bitwise, 1 for input, 0 for output
• (“1nput or 0utput”)

6

PIC32 datasheet, pg. 144

Read / Write

• Read from PORTx
• When a pin is designated as an input, reading the corresponding bit of

PORTx will return the value on that pin.

• Write to LATx
• When a pin is designated as an output, writing to the corresponding bit of

LATx will output that value on the pin.

7

PIC32 datasheet, pg. 144

Analog Select

• Use ANSELx to set pins to analog or digital mode.

• 0 for digital, 1 for analog
• We will typically use digital.

• Use reference manual to determine which pins are analog
capable.

8

PIC32 datasheet, pg. 144

Push Buttons

9

Always connected

Connected when
button is pressed

Illustration of Internal Connection

Notice that the top LED in this setup is always
connected to the voltage source, but the bottom is
only connected when the button is pressed.

Pull-Up and Pull-Down Resistors

• If a microcontroller’s input pin is left
floating, it may not read the correct
digital value.

• Pull-up and pull-down resistors should
be used to ensure consistent behavior.

10

Pull-down
Pin is pulled LOW
until button is
pressed

Pull-up
Pin is pulled HIGH
until button is
pressed

Floating (incorrect)
Pin has indeterminate value
until button is pressed

Active-Low vs Active-High

• An active-high signal is “on” when its voltage is HIGH.

• An active-low signal is “on” when its voltage is LOW.
• e.g., the Output Control (/OC) pin of the SN74LS373

• In this lab, we want the button’s output to be ACTIVE-LOW.
• This means the MC will read LOW when the button is pressed, and HIGH otherwise.

• Reference the diagrams in the previous slide to determine how to wire the button to achieve this.

• Since the button will be used to update the latch, consider what this means for the program you will write.

11

DIO (Digital Input/Output)

• If using the NI-ELVIS II:
• Open the NI Instrument Launcher application and select Digital Reader.

• Click the switches to toggle the outputs HIGH or LOW.

• The DIO ports are located on the top-right section of the board.

• If using the Analog Discovery 2:
• Open the WaveForms application and select StaticIO.

• Click the drop-down arrow(s) and select push/pull switch.

• The DIO pins are labeled 0-15 on the AD2’s case.

12

Notes on Voltages

• The PIC32 runs on 3.3V, but the Elvis board uses 5V logic.
• The chipKIT Cmod is powered by 5V, but uses a regulator to supply the PIC32 with 3.3V.

• Only some of the PIC32’s pins are 5V tolerant.
• Carefully read the pinout diagram in the reference manual to choose an appropriate pin.

• Pin 2 of the Cmod provides a 3.3V output.
• This is the output of the regulator that powers the PIC32.

• Do not short this pin to ground or apply a voltage to it.

13

See sections 3 and 4 in the Cmod
reference manual for details on the
power supply and 5V compatibility.

Creating a new project

1. Open MPLAB X

2. Select File > New Project (or click)

3. Select Standalone Project and click Next

14

4. Select 32-bit MCUs

5. Select PIC323MX150F128D and click Next

Creating a new project

6. Select the XC32 compiler and click Next

15

7. Name the project

8. Select a save location you can always access

9. Click Finish

Creating a new project
10. Right-click Source Files under project name

11. Select New > Other…

16

12. Select C and C Source File, then click Next

After these steps have been done once,
New > C Source File will become an option.

Creating a new project

13. Name the source file and click Finish

(It is helpful to give each project’s source file a different name.)

17

14. Make sure to include plib.h

You can now write your program.

Lab Goals

• Read two inputs from DIO with the MC.

• Output those same values from the MC to both
the latch and the first pair of LEDs.

• Read an active-low input signal from a button.

• When the button is pressed, output a signal from
the MC to enable the latch.

• The second pair of LEDs, connected to the latch
outputs, should update to match the inputs
when the button is pushed.

18

DIO

Button

ch
ip

K
IT

C
m

o
d 7

4
LS3

7
3

2

2

2

2

*Your pre-lab diagram must include the
specific pins to be used, as well as resistors,
connections to power and ground, etc.

Simple Diagram*

LEDs

LEDs

Enable

Lab 3: Comparators
ECE 3720

1

Preview
A variable, analog voltage will be produced with a potentiometer and connected to three inputs of the
microcontroller. Each of the PIC32’s three comparators will be set up to compare this input with a different reference
voltage. The states of the comparators’ outputs will be indicated by LEDs, such that turning the potentiometer
clockwise will light up the LEDs in succession.

2

Topic Slide

Analog Capable Pins 3

Potentiometer 4

Comparators 5

Lab Goals 8

Notes 9

Analog Capable Pins

• This is the first lab in which we will use the analog capabilities of the
PIC32.

• Only some pins of the PIC32 can read analog voltages.
• Refer to the pinout diagram in the Cmod reference manual to identify these pins.

• Note that none of these are 5V tolerant.

• Recall that the ANSELx registers are used to set pins to analog or
digital mode.

3

Blue boxes indicate analog capable pins

PIC32 Datasheet, pg. 144

Potentiometer

• Variable resistor
• Ours is a 10 kΩ trimming potentiometer (“trimpot”).

• Three pins
1. Min voltage (GND)

2. Output

3. Max voltage (3.3V)

• Turning the knob clockwise increases resistance
between pins 1 and 2.

4

Notice that pins 1
and 3 are labeled
on the top face

Comparators

• Compare two input voltages, outputting logical HIGH or LOW depending on which input is greater

• The PIC32 contains 3 comparators
• We will use all 3 in this lab, each set up to compare the input from the potentiometer to a different voltage.

• This will be accomplished by using the registers detailed in the next two slides.

5

“Inverting”
input

“Non-Inverting”
input

Output

Inputs Output

Non-Inverting > Inverting 1

Non-Inverting < Inverting 0

Comparator Registers

The following are the registers of interest for this lab. You will need to
reference their sections in the datasheet.

• CMxCON (datasheet pg. 212)
• Control registers for each comparator (x is 1, 2, or 3)

• Used to control the values in and out of the comparators

• CMSTAT (pg. 213)
• Status register that holds the output values from all 3 comparators

• CVRCON (pg. 216)
• Control register used to set the comparator reference voltage (CVREF)

• You will set the values of CVRSS, CVRR, and CVR

• We want CVREF = 0.75 * CVRSRC

• CVRSRC will be the difference between VREF+ and VREF- , which you will supply
externally.

• Note that you cannot achieve exactly 0.75 * CVRSRC , but you can get close.

6

Comparator Setup

The following are the comparator input combinations used in this lab:

CMP1: IVREF as inverting input and C1INA as non-inverting

CMP2: C2IND as inverting input and VCREF as non-inverting

CMP3: C3IND as inverting input and C3INA as non-inverting

7PIC32 datasheet, pg. 211

Notice that the values in CMXCON control
the multiplexers and the output polarity

This is only 1/3 of
the full diagram
in the datasheet.

We can’t access this right now,
so where else can we find the
comparator output?

Lab Goals

• Output of the potentiometer will connect to 3
inputs of the MC.

• 3 LEDs will be connected to outputs of the MC,
and indicate the statuses of the comparators.

• As the potentiometer is turned clockwise and
the output voltage increases, the LEDs turn on in
sequence.

8

Potentiometer

chipKIT Cmod

3

Simple Diagram

LEDs

VPS at 3V

C1INA

C3INA

C3IND

C2IND

VREF+

VREF-

3.3V

GND

1 3 1 3 1 3 1 3

Out = IVREF Out = CVREF Out =3VOut = 0V

1 3

*not exact trimpot positions

Notes

• Recall that the Cmod has a 3.3V output on pin 2.

• C1INA, C3IND, VREF+ , etc. correspond to specific pins on
the MC. Look them up in the reference manual.

• VPS (variable power supply) on NI-Elvis II:
• Output located in bottom-left section of Elvis board

• Controlled through the NI Instrument Launcher

• If using the AD2, you can supply 3V to C3INA and power
the MC over USB.

• Your code will feature a bunch of register setup before
the while loop, then just a few lines inside the loop.

• If your LEDs turn on in the wrong order or at the wrong
voltages,

• Make sure you are connecting the right pins

• Make sure you are supplying 3V (not 3.3V) to C3INA

• Check your CVRCON values (CVREF may be incorrect)

• Comparators’ polarities may need to be flipped
9

Lab 5: Interrupts
ECE 3720

1

Preview

The MC will count from 0 to 15 as in Lab 1, but with the addition of an interrupt that will turn on all the LEDs
for a few seconds. Afterwards, the counting will resume where it left off. The interrupt will be triggered by a
debounced button.

2

Topic Slide

Interrupts 3

Interrupt Registers 4

ISR 6

Setting up the interrupt 7

Debouncing 8

Lab Goals 9

Interrupts

• When an interrupt is triggered,
1. MC halts main work and saves state

2. MC finds and executes interrupt service routine (ISR)

3. MC restores main state and continues operation

• Possible interrupt sources include external pins, timers, and other peripherals.

• Interrupts remove the need to repeatedly check values while waiting for event.
• Constantly checking like that is called “polling”, and it’s what we did in Lab 2.

• Once an interrupt is set up, it is handled automatically by the microcontroller
• You will use registers to tell the MC what triggers the interrupt, and write an ISR to tell the MC what to do when it occurs.

• You will not call the interrupt function at any point.

• You will not check the value of a pin.

3

PIC32 datasheet, pg. 87

Interrupt Registers

The following are the registers of interest for this lab

• IECx (datasheet pg. 92)
• Used to enable or disable particular interrupts

• INTCON (pg. 90)
• We will use this to set edge polarity of external interrupts

• If set to rising edge, the interrupt will trigger when the pin transitions to HIGH

• IFSx (pg. 92)
• Interrupt flag status register

• Every interrupt has a “flag” that goes HIGH when the interrupt is triggered

• The flag must be cleared before the interrupt can trigger again

• IPCx (pg. 93)
• Interrupt priority control register

• 1 is highest priority, 7 is lowest

• A priority of 0 effectively disables the interrupt

• Sub-priority does not matter for our purposes
4

Interrupt Bit Locations

• Table 7-1 (on pg. 88 of the datasheet) provides the necessary information for using each interrupt.
• This is an important resource. You will want to refer to it again in future labs.

• Note that the number in the register name may not match the number in the peripheral name.

• The vector number identifies the interrupt source, and will be used when writing your ISR.

5

PIC32 datasheet, pg. 88

ISR (Interrupt Service Routine)

• Tells the MC what to do when an interrupt occurs

• Use the following macro to identify the interrupt source:

__ISR(vector, ipl)
• Note that there are two underscores

• The first argument is the vector number for the interrupt source

• We can omit the second argument, which sets a priority level

• Write your ISR function, with _ISR() between the return type and function name.
• The interrupt takes no arguments and returns no data, so both are void.

• Make sure to clear the correct interrupt’s flag at the end of the function.

6

The function name
can be anything

Setting up the interrupt

• You must include the following line to enable interrupts:

INTEnableSystemMultiVectoredInt();

• In this lab we will use External Interrupt 0 (INT0).
• One of 5 external interrupts on the PIC32

• INT0 is the only one hard-mapped to a particular pin (find it in the reference manual)

• Use the registers in slide 4 to set the priority and polarity of INT0, then enable it.
• It’s also good practice to clear the interrupt’s flag when setting it up.

• Then write your ISR as shown on the previous slide.
• Make sure you don’t put it inside your main function.

7

PPS (Peripheral Pin Select) indicates that
the peripheral can be mapped to a variety
of pins. This will be covered in Lab 6.

INT0 is mapped to this pin on
the PIC32, but it has a different
number on the chipKIT Cmod

PIC32 datasheet, pg. 21

Debouncing

• Switches have a tendency to bounce rapidly between HIGH
and LOW when first toggled.

• This can be addressed with both hardware and software

• We will implement the debouncer seen at right using the
SN74LS00 and a SPDT (single pole, double throw) switch.

• This is an example of an SR (set-reset) latch

• Q’ = !Q

• When the switch transitions between throws, the pull-up resistors and
NAND gates ensure the output remains unchanged it settles.

• Connect one of the outputs to INT0
• You can wire both outputs to LEDs first to check their behavior

8

Switch output bouncing
between LOW and HIGH

http://www.ti.com/lit/ds/symlink/sn74ls00.pdf

Lab Goals

• Recreate Lab 1, but with an interrupt that causes
all the lights to turn on and stay on for a few
seconds.

• The interrupt should be triggered by the
debounced output of the SPDT switch.

• When the interrupt ends, the MC should resume
counting where it left off.

9

SPDT switch

chipKIT Cmod

4

Simple Diagram

LEDs

INT0

SN
7

4
LS0

0

Debouncer

2

Lab 6: Peripheral Pin Select
ECE 3720

1

Preview

Peripheral Pin Select will be used to enable a second external interrupt. The two outputs of a rotary encoder
will trigger the interrupts, causing a count variable, displayed on LEDs, to increase or decrease depending on
the direction of rotation.

2

Topic Slide

Peripheral Pin Select (PPS) 3

Using PPS 4

Grayhill 61C Optical Encoder 6

Lab Goals 7

Determining Direction of Rotation 8

Peripheral Pin Select (PPS)

• Peripheral Pin Select allows the inputs and outputs of certain peripherals (such as timers or external
interrupts) to be mapped to various external pins.

• Recall that in Lab 5 we only used the one interrupt already mapped to a pin.

• In this lab, you will use PPS to access an additional external interrupt.

• See section 11.3 (pg. 145) of the PIC32 datasheet for details on PPS.

3

PIC32 datasheet, pg. 145

PIC32 datasheet, pg. 21

Using PPS (method 1)

• You can remap pins with the following macros:

PPSInput(grp, fn, pin)

PPSOutput(grp, pin, fn)

• grp (“group”) refers to the box in column 4 of table 11-1 or
11-2.

• fn (“function”) is the name of the peripheral
• Col. 1 of table 11-1 or col. 4 of table 11-2

• pin is the name of the pin
• Col. 4 of table 11-1 or col. 1 of table 11-2

• RP in RPxx stands for “remappable pin”

4

Group 1

Group 2

Group 3

Group 4

PIC32 datasheet, pg. 146

Using PPS (method 2)

• The second method is explained in sections 11.3.4
and 11.3.5 of the datasheet (pgs. 145-148).

• Refer to tables 11-1 and 11-2. To map a peripheral’s
input/output to a pin, write the corresponding value
from column 4 to the control register in column 3.

5PIC32 datasheet, pg. 148

PIC32 datasheet, pg. 146

These are just the first sections of
each table. Look in the datasheet

for the full tables.

Example usage

Grayhill 61C Optical Encoder

• Datasheet available here

• Used to track rotational position

• Pay close attention to the diagram and table on page 2 of the datasheet.
• Some of the resistors shown are internal and some are external.

• Notice how the two outputs represent position. One of them changes with each tick of the dial.

661C datasheet, pg. 2

http://lgrws01.grayhill.com/web1/images/ProductImages/I-21-22.pdf

Lab Goals

• Like Labs 1 and 5, a variable will count between 0
and 15 and be displayed on 4 LEDs.

• The count should loop from 15 back to 0 and from 0 up to 15.

• Unlike Labs 1 and 5, the count will not change automatically.

• Use PPS to enable a second interrupt.
• Remember to pay attention to 5V tolerance

• Connect each output of the encoder to one
interrupt.

• Increment the count on CW rotations and decrement
on CCW rotations*.

• Only modify the count in the ISRs

• This means the count variable must be global

• Do not save the previous state of the encoder

7

Rotary encoder

chipKIT Cmod

4

Simple Diagram

LEDs

INT0

INTX

*Make sure to read the next slide for details
on how to determine the direction of rotation.

Determining Direction of Rotation

• Pay close attention to the table from the 61C datasheet to
determine whether to increment or decrement count.

• Each encoder output will have its own interrupt and ISR,
which will be triggered any time the output changes.

• Remember to clear the flag at the end of the ISR.

• Since the rotations cause both rising and falling edges, the
interrupts’ polarities will have to change accordingly.

• e.g., if an interrupt was just triggered by a rising edge, it must next watch
for a falling edge.

• You will need to modify the interrupt’s polarity from inside the ISR.

• For example, suppose the interrupt for output A is triggered:
• You can read A and B to get the current position.

• You know A just changed, so you can determine the previous position.

• Then you have enough information to modify count and update the
polarity.

8

61C datasheet, pg. 2

This is an example of gray code, since successive
values always differ by only one bit.

Lab 7: Timers
ECE 3720

1

Preview

One of the microcontroller’s timers will be set up and used to trigger an interrupt at frequencies corresponding
to musical notes. The interrupt will toggle the digital output to a piezo buzzer, causing it to produce the desired
notes, and play a song.

2

Topic Slide

Timers 3

Timer Registers 4

Timer Diagram 5

Piezo Buzzer 6

Code 7

Lab Goals 8

Notes 9

Timers

• The PIC32’s timers operate by counting up on every cycle of the clock. When a certain value is reached, an
interrupt can be triggered, and the counting resets.

• Timer 1 (type A)
• Datasheet pg. 151

• 16-bit (so max count value is 0xFFFF)

• Includes real-time clock functionality (not used in this lab)

• Timers 2-5 (type B)
• Datasheet pg. 155

• Each individual timer is 16-bit

• Timers 2-3 and timers 4-5 can be combined to form 32-bit timers

• Even-numbered timer supplies the control logic

• Odd-numbered timer supplies the interrupt

3

PIC32 datasheet, pg. 156

Timer Registers

The following are the registers of interest for this lab. The diagram on the next slide shows how they are used.

• TxCON (datasheet pg. 152/157)
• Timer control register

• Enable/disable timer

• Select clock source

• Select prescaler value

• TMRx
• Holds the timer’s running count value

• Increments on each clock cycle (or every few cycles, depending on prescaler)

• You do not need to write to this register.

• PRx
• Holds value the timer should count to before resetting

• You will set this value to control how frequently the timer interrupt occurs.

• This value should only be changed in the ISR, or when timer is disabled.

4

Timer Diagram

5PIC32 datasheet, pg. 155

Prescaler divides the clock frequency
• e.g., a prescaler value of 4 would cause the

timer to count 4 times slower than the clock.

Select clock source
• We’ll use the Peripheral Bus Clock (PBCLK),

which is derived from the built-in system clock.
• The alternative would be connecting an

external source (TxCK).

When TMRx == PRx,
• TMRx gets reset
• Corresponding timer interrupt is triggered

Diagram for timers 2-5 is shown
• Timer 1’s diagram is on pg. 151.
• The 32-bit timer diagram is on pg. 156.

Piezo Buzzer

• A piezoelectric material changes shape when exposed to an electric field.

• Changing the voltage across the buzzer at a high frequency causes the material inside to vibrate at the same
frequency, producing a note.

• We will use timers to toggle an output voltage on and off at specific frequencies in order to play a song.

6

Code

• For this lab you are provided a skeleton code (main_skeleton.c) which you
will complete.

• The definitions at the top of the program (a through CC) represent the
periods of notes, in terms of PIC32 clock cycles.

• Recall that period is the inverse of frequency.

• See the “notes” slide for info on how these are calculated.

• Definitions q through edot represent note lengths. q is a quarter note, e is
an eighth note, etc.

• Notice you are given two arrays
• delay is full of note lengths

• music_notes contains notes in the order they are to be played

• You do not need to change anything inside the while(1) loop
• The if statement steps through the notes of the song, remaining on each note until j reaches

the value of delay[i].

• Notice that j is not changed anywhere in the given code. You must increment j somewhere.

7

Lab Goals

• Connect the buzzer to an output of the MC with a
button in between so it only makes sound when the
button is pressed.

• Set up a timer using TxCON.

• Set up an interrupt triggered by your chosen timer.

• Use the interrupt to toggle the output (when you
want to play sound). This will produce a note
dependent on how frequently the interrupt occurs.

• The interrupt should also update the note being
played.

8

Simple Diagram

Buttonch
ip

K
IT

C
m

o
d

Buzzer

Notes

• Middle C example:
• Middle C has a frequency of 261.6 Hz

• MC clock runs at ~2 MHz

• 2M cycles/s * 1s/261.6 = 7645 cycles per middle C period

• Divide by 2 to get cycles per inversion  #define C 3817

• r, which appears in music_notes, represents a rest. No sound should be played when this is the current note.

• Consider the possible values to be loaded into PRx. Will a 32-bit mode timer be necessary?

9

Lab 8: Pulse Width Modulation
ECE 3720

1

Preview

The output compare peripheral will be used to produce a PWM signal to control the speed of a motor via a
motor driver. A button-triggered interrupt will be used to select the duty cycle of the PWM signal.

2

Topic Slide

Pulse Width Modulation (PWM) 3

Output Compare (OC) 4

OC Diagram 5

Using OC for PWM 6

L293DNE 7

Lab Goals 8

Pulse Width Modulation (PWM)

• By turning a digital output on and off in a regular pattern, an average voltage can be produced that is
proportional to the percentage of time the output is HIGH.

• The percentage is called the duty cycle, as seen below.

• This is used to control the speed of DC motors, the position of servos, the brightness of LEDs, etc.

3

Output Compare (OC)

• The PIC32 does not have a dedicated PWM peripheral. However, the output compare peripheral can be used
to generate PWM signals.

• Output compare works with the MC’s timers to trigger an event at a specified point the timer’s cycle.
• Recall that the timer counts up in the TMRx register until it reaches the value in PRx.

• Similarly, output compare triggers an event when TMRx matches OCxR

Registers:

• OCxCON (datasheet pg. 164)
• Used to enable OC, select the timer, and select the mode of operation

• OCxR
• Holds the value to be compared to TMRx

• Similar to PRx, this register should not be written to while the timer is running

• OCxRS
• Copies its value to OCxR when previous PWM cycle completes

• You should write the desired OCxR value here

4

PIC32 datasheet, pg. 163

Output Compare Diagram

5PIC32 datasheet, pg. 163

OCxRS is copied
to OCxr

OCxR is compared
to timer value

OC output can be
mapped to a pin
with PPS

Values in OCxCON select
timer and output logic

Using OC for PWM

• The OC’s PWM mode can be selected in OCxCON. Note that we do not need fault detection for this lab.

• Use peripheral pin select (covered in Lab 6) to map OC’s output to a pin.

• The diagram below illustrates how the timer and OC registers are utilized in PWM application.

6PIC33 Output Compare reference manual, pg. 26

Compare this
diagram to the
one on slide 3

L293DNE

• Datasheet available here

• Rather than attempt to drive a motor with the PIC32’s
limited output power, we use a motor driver IC.

• Power for the motor is supplied to the driver, while the
MC provides the PWM input that will control the driver
output and the motor’s speed.

• You will want to reference the pin descriptions on
page 3 of the L293 datasheet, and the functional block
diagram on page 7.

7

L293DNE datasheet, pg. 5

https://www.ti.com/lit/ds/symlink/l293d.pdf?ts=1595515716405&ref_url=https://www.ti.com/store/ti/en/p/product/?p%3DL293DNE

Lab Goals

• Set up the output compare an timer peripherals to
output a PWM signal to the L293DNE.

• OC should not be enabled before the timer.

• Neither should be enabled until after its registers are set up.

• Wire the driver and motor as shown on page 7 of the
L293 datasheet.

• This will require the use of a diode.

• Set up an external interrupt to be triggered by a
button.

• On each press of the button, the PWM duty cycle
should increase by 25% .

• When the duty cycle is at 100%, it should next go back to 0%.

• Note that a duty cycle of 25% likely will not cause the motor
to turn, but you should be able to hear it attempting to do so.

8

Simple Diagram

ch
ip

K
IT

C
m

o
d

DC Motor

L2
9

3
D

N
E

PWM

Button

Lab 9: Serial Peripheral Interface
ECE 3720

1

Preview

The PIC32’s SPI module will be used to send data serially to an external shift register, which will display its value
on LEDs. Each time a button is pressed, the MC will send a new value to the shift register.

2

Topic Slide

Serial Peripheral Interface 3

SPI Module Diagram 4

Using SPI 5

SN74HC595 (shift register) 6

Lab Goals 7

Notes 8

Serial Peripheral Interface (SPI)

• SPI is a communication protocol often used for
short-distance communication in embedded
systems.

• Serial communication sends data one bit at a time over
a single channel.

• Master-slave architecture
• Each can send data to the other.

• Master provides the clock and slave select signals
(slave select tells that particular device to listen).

• PIC32 can operate as master or slave. We’ll use it in
master mode.

3

PIC32 FRM – Section 23. SPI, pg. 4

PIC32 FRM – Section 23. SPI, pg. 2

The terms MOSI (Master Out, Slave In) and
MISO (Master In, Slave Out) are often used
to refer to the two data channels.

SPI Module Diagram

4

Write transmit data and read
received data from SPIxBUF
• Data propagates automatically to SPIxTXB

(transmit) or from SPIxRXB (receive)
• You will only write to SPIxBUF

Output pins
• SDOx and SSx must be mapped with PPS
• SCKx is hard mapped to a specific pin

Baud Rage Generator
• Baud rate refers to rate of data

transfer (bits/s)
• Here, the BRG divides the clock

to achieve desired rate

PIC32 FRM – Section 23. SPI, pg. 3

Using SPI

• The document Section 23 – Serial Peripheral Interface is available on Canvas in the Lab 9 module.
• Contains all the information about the PIC32’s SPI capabilities

• Follow the steps in Section 23.3.3.1 Master Mode Operation.
• This covers the majority of what you need to do in your code.

• Study pages 18-20 for a better understanding.

• See the notes at the end of these slides for details on what values you will set.

• Registers of interest
• SPIxBUF //write or read data

• SPIxCON //configure SPI module (pg. 8)

• SPIxSTAT //SPI module status (pg. 13)

• SPIBRG //divisor for baud rate generator

5

SN74HC595

• Datasheet available here

• Study the logic diagram on page 1
• Features two registers (the columns of 8 flip-flops)

• Shift register (left column) receives data from SER one bit at a
time. On each tick of SCLK, the newest bit is stored in the top FF,
and previous bits are each shifted down one.

• Storage register (right column) is connected to outputs QA-QH. It
updates to match the shift register on each tick of RCLK.

• Find the timing diagram on page 8
• Notice that the outputs update on rising edges of RCLK.

• Outputs go to high impedance state when OE goes high, and get
cleared when SRCLR goes low. Neither should be left floating.

6

SNx4HC595 datasheet, pg. 1

https://www.ti.com/lit/ds/symlink/sn74hc595.pdf

Lab Goals

• Use the PIC32 in SPI master mode to send the values
from the given array to the shift register.

• Connect the SN74HC595 inputs as shown in the
diagram, and its outputs to LEDs (or digital reader).

• Set up an external interrupt. Each time it’s triggered,
the next value in the array should be written to
SPIxBUF and appear on the LEDs.

7

Simple Diagram

Button

chipKIT Cmod

SN
7

4
H

C
5

9
5

LEDs

SDOx

SSx

SCK

INTx

Array of values to display:
char spiChars[18] = {0, 1, 4, 8, 16, 32, 64, 128, 255, 254, 253, 251, 247, 239, 223, 191, 127};

8

(Can use DIO instead of
button and/or LEDs)

Notes

• The SPI module can transmit 8-, 16-, or 32-bit bit data. What data width will be needed for this lab, and how
is that mode selected? (see section 23.3.1)

• The following is a checklist of values to set (located in SPI1CON, unless otherwise specified)
• IEC1bits.SPIRX = 0

• IEC1bits.SPITX = 0 // Disable SPI interrupts

• ON = 0 // Disable SPI module during setup

• SPI1BUF

• ENHBUF = 0 // Don’t want enhanced buffer mode

• CKP, CKE // See figure 23-9 in Section 23 document (pg. 20)

• SPIBRG = 1000 // Should result in baud rate slow enough to observe transmission with oscilloscope

• SPIROV // In SPI1STAT

• MSTEN, MSSEN

• ON = 1 // Enable SPI module after setup is complete

8

Lab 10: Analog to Digital Conversion
ECE 3720

1

Preview

A variable, analog voltage will be produced with a force-sensitive resistor and serve as an input to the PIC32’s
ADC module. The ADC will convert the voltage into a digital value, which will be displayed in binary on the MC’s
output LEDs. Increasing the force on the FSR should cause the LEDs to count up.

2

Topic Slide

Analog to Digital Conversion (ADC) 3

ADC Diagram 4

Using ADC 5

Force-Sensitive Resistor (FSR) 6

Lab Goals 7

Notes 8

Analog to Digital Conversion (ADC)

• ADC is the process of reading an analog signal, which has infinite possible values, and producing a digital
representation of it using a finite number of bits.

• This is done any time an analog value (typically a voltage) must serve as an input to a computer.

3

Analog input value Digital representation

0-1 V 00

1-2 V 01

2-3 V 10

3-4 V 11

Example: Suppose we had an analog input of 0-4 V and a 2-bit ADC:

• Note that the precision of the digital representation depends on the number
of bits available. 2 bits gives us 4 possible values, 3 bits would allow 8, etc.

• We will be using a 10-bit ADC and a voltage range of 0 to 3.3V

ADC Module Diagram

Sampling and Conversion
• Sample and hold amplifier

(SHA) reads input and holds.
• Successive approx. register

(SAR) ADC converts to digital.
• Results stored in ADC buffers.

Reference Voltages
• VREF+/- are external pins.
• AVDD and AVSS are the

PIC32’s internal voltages
(3.3V and 0V).

Multiplexers to select
ADC inputs
• Positive input can be any

of the analog read pins.
• Negative input is AN1 or

low reference voltage.
• Settings for MUXA and

MUXB (we only use A)

PIC32 FRM – Section 17. ADC, pg. 3

Using ADC

• The document Section 17 – 10-Bit AD Converter is
available on Canvas in the Lab 10 module.

• Contains all the information about the PIC32’s ADC capabilities

• See section 17.3.1 (pg. 12) for a more detailed explanation of ADC
module’s operation.

• Follow the steps in section 17.4 ADC Module
Configuration.

• Sections 17.4.1-17.4.15 provide detail on each of the steps.

• See the notes at the end of these slides for details on how to set
up ADC for this particular lab.

• You will set up an ADC interrupt to trigger after every 4 samples
and display their average.

5

PIC32 FRM – Section 17. ADC, pg. 12

Force-Sensitive Resistor (FSR)

• Very high resistance normally.

• Resistance decreases as force is applied.

• Used to create a variable, analog voltage.

6

Lab Goals

• Wire the FSR to supply a variable, analog voltage (0-
3.3V) to an analog-read-capable pin.

• Set up the PIC32’s ADC module to sample and
convert the voltages (section 17.4).

• Set up the ADC interrupt:
• Should trigger after every 4 samples.

• Average the 4 converted values (first 4 ADCBUFs).

• Output the 8 most significant bits (10-bit ADC, so >> 2).

• Display the converted value on 8 LEDs or with digital
reader.

7

Simple Diagram

ch
ip

K
IT

C
m

o
d LEDs

8

FSR

Notes

• Make sure to follow all 15 steps of section 17.4 (step 13 should appear last in the code).

• We don’t have AD1PCFG; use ANSELx instead.

• Only use MUXA.
• The ADC module can be set up to alternate between two inputs, which use MUXA and MUXB to select their ADC inputs, respectively.

Since we are only using one input, we only need MUXA.

• Make sure sampling and conversion trigger automatically.

• Take 4 samples before each interrupt.
• It’s common to average multiple samples with an ADC, in order to ensure the result accurately reflects the input.

• Use 12 for your acquisition time (step 11)

• Use 6 for your prescaler (step 12)

8
PIC32 FRM – Section 17. ADC, pg. 12

	Lab1-Intro.pdf
	Lab2-DigitalLatch.pdf
	Lab3-Comparators_compressed.pdf
	Lab5-Interrupts_compressed.pdf
	Lab6-PPS_compressed.pdf
	Lab7-Timers_compressed.pdf
	Lab8-PWM_compressed.pdf
	Lab9-SPI_compressed.pdf
	Lab10-ADC_compressed.pdf

