GCLEMSON

Microcontroller Interfacing Lab
ECE 3720

Dillon Todd - Summer 2020 1

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Syllabus

e Course objective: Learn about the functionality and modules of a microcontroller, and how to use it to
interface with various devices.

* Pre-Labs: wiring diagram for upcoming lab

* Post-Labs: follow outline provided on Canvas These three assignments will be
>

.))) due before each lab.

* Quizzes: cover material from preceding lab and upcoming lab

* Of the three weekly assignments, this should be done last)

* Final design project: come up with a design that incorporates elements of multiple previous labs
* More details will be provided closer to the end of the semester

Grade Distribution

Post-Lab Reports 40%

Pre-Labs 5%
Lab Completion 15%
Quizzes 15%

Design Project 25%

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Equipment

NI-Elvis Il or Analog Discovery 2 (AD2)
ChipKIT Cmod ¢ Multi-function instruments
e Contains a PIC32MX150F128D microcontroller * Will be used to supply power, inputs, and outputs for the MC
* Allows easy access to microcontroller’s pins

ChipKIT PGM
* Allows programming of the MC with MPLAB X IDE

\SB

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Software Development Environment

MPLAB X will be used to write and compile code,

d load the executable onto the microcontroller
X IDE
vv

What is MPLAB X IDE?

MPLAB® X IDE IS A SOFTWARE PROGRAM THAT IS USED TO DEVELOP APPLICATIONS FOR MICROCHIP
MICROCONTROLLERS AND DIGITAL SIGNAL CONTROLLERS.

This development tool is called an Integrated Development Environment, or IDE, because it provides a single
integrated “environment” to develop code for embedded microcontrollers. MPLAB X IDE incorporates powerful tools
to help you discover, configure, develop, debug and qualify your embedded designs. MPLAB X IDE works seamlessly
with the MPLAB development ecosystem of software and tools, many of which are completely free.

MPLAB X user’s guide, pg. 7

Documentatio

) CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

MicrocHIP

PIC32MX1XX/2XX

32-bit Microcontrollers (up to 256 KB Flash and 64 KB SRAM) with
Audio and Graphics Interfaces, USB, and Advanced Analog

Operating Conditions
* 2V 1o 36V, -40°C 10 +105°C, DC bo 40 Mz
+ 23V In 36V, -80°C 10 +85°C, DE 1o 40 Mz

Core: 50 MHz/E3 DMIPS MIP 532° M4K®

+ MIPS16a® mode for up 10 40% smaler coce size

+ Code-efficient (C and Astemidy) architechre

+ Singie-cytle (MAC) 3216 and two-cyce X2xd2 multply

Clock Management

* Q9% internal escllaka

+ Programmabie PLLS and cscilabor clock sourcas
+ Fai-Safe Clock Monitor (FSCM)

+ Independent Waichdog Times

» Fisl wake-up snd $4riup

Power Management

* Low-powar management modes (Sleep and kdie)
« Integrated Powei-oh Resel and Riown-oul Resel
« 0.5 mAMNE dynamic curmet (ypical]

+ 20 jaA eo cumrent (typical}

Audio Interface Features
+ Dts communicaton: 1S, LJ, RJ, and DSP modes
+ Control mterface: SP and IFC™
+ Master clock
Generation of fractional clock frequencies
Can be synchrontzed with USE dock
- Can be tuned in n-time

Advanced Analog Features
+ ADC Moouly
- AD-Bt 1,1 Maps rate wilh one SEH
- Upto 10 snsiog inputs on 24-pin deviced and 13
BNakeg ingets on 44-pin devices
+ Flauitia and indepandent ADC iggar $oeces
+ Chirge Time Measweamant Uinit (CTMUL
- SuppoMts MTseCh™ capacitiv bush sensing
- Providés high-resclution Sme maasuramant (1 ns]
- Dw-chip tlemparature maas yrament capabisty

Timers/Cutput Compare/input Capture
» Free Qunarsl Purpose Timens

- Five 16-8it and up to two 32-b8 TmersiCounters
Five Cutput Compare (OC) medules

Five Ingiet Cagtute (1C) modules

Perighwenl Pin Select (FFS) bo allow funciion remap
Real-Tima Clock and Calendar (RTCC) medule

Communication Interfaces

+ USE 2 0-compliant Full-speed OTG contraller

+ Two UART modaes (125 Mbps)

+ Supports LIN 2.0 peotocols and iDA® suppon

Two &-wire 571 modules (25 Mbps)

Two 1°C: medles (Up 1o 1 MBaud) with SMBLs support
S Lo aliow funchon remap

Parabel Masber Port (PMP)

Direct Memory Access (DMA)

+ Four channats of Raedware DMA with Sulomatic data
Size delecion

» Two addmonal chasssis dedicaled fof USE

+ Programmatés Cycic Redundancy Chack (CRC)

InputiCutput

* 10mA source/sink on all VO pins and up o 14 mA on
non-giandaid Yo

- SV-aerend pans

- Salectabis open e, pull-ups, AN puk-Sowns

+ Extarmal inlemupts on all b0 ping

Qualification and Class B Support

+ AEC-D100 REVG (Grade 2 -40°C 10 + 105°C) plannad
* Class & Satety Library, IEC 50730

Debugger Development Support

* Ie-creul and in-applcation programming

= d-wire MIPS® Enhanced JTAG interface

= Unbmited program and s complex dals Beeakpants
+ IEEE 1149 2-compatbia (JTAG) boundary scan

1300 Heriey Crurt

ADIGILENT S

wehian chglerstice com

chipKIT™ Cmod™ Reference Manual

Revised November 6, 2013
This manual applies i the chiphIT Cmod rev. E

Overview

The chipkIT Cmod i 8 chipkIT/MPIDE compatible beard from Digilent. it combines a Microchip®

PICI2MX 1501250 microcontrolier with a convenient 600-mil, 40-pin DI paciage and two Digilent Pmod
Digilent's cr deally suited for breadboards or other protatype circuit designs whene the

use of small surtace mount packages is impractical,

The chipkIT Cmaod takes advantage of the powerful PIC3ZMX150F1280 microcontroller, This microcontraller
features a 32-bit MIPS processor core running at 40MHz, 128K of flash memary, and 32K of SRAM data memory.

The chipkIT Cmod can be programmed wsing the Multi-Platform Integrated Development Enviranment, MPIDE, an
eraronment based on the open source Arduino® IDE modified to support the PIC32 microcontroller, The board
provides everythang needed to start develaping embedded applications using the MPIDE.

The chipkIT Cmaod i5 also fully compatitle with the advanced Microchip MPLAE® IDE. To develop embedded
+ such as the Digilent chipiIT PGM or the

applic; g MPLAB®, a sepai device prograr
Microchip PICKIT™3 s required.

Features Include:

+ Microchip® PICI2MXLS0F1280 microcantroBier [40/50
BAhz 32-bit MIPS, 1283 Flash, 32 SRAM)

+ Convenient 600-mil, 2x20-pin DIP package

* 5V=12Vrecommended operating voltage

* 33 available /O pins

* Two user LEDs

= PCconnection uses a USE A ta micro B cable [not
intuded)

* 13 analog inputs

+ 3.3V operating voltage

PIC32 Datasheet

For information about the modules
and registers of the microcontrollers

Cmod Reference Manual
For pinout diagram, power info, and
other details about the board

I
FAIRCHILD

SEMIC ™

DM74LS373 » DM74LS374

3-STATE Octal D-Type Transparent Latches
and Edge-Triggered Flip-Flops

General Description

These &-bd registers Iuamn! iotem-pole 3-STATE outputs
designed spociicaly for ariving Peghly-capacive o rola:
tivedy low-impedance maas The high-impedance state and
increased high-logic level drive provide these fegisters with
the capabiity of being connected directly bo and driving the
bus Ines in a bus-organized system without noed for inter:
Tace of pul-up componants. They are particuany aracive
fof implementing buffer registers, LD podts,

bus: drivers, and warking registers

The eight iatches of the DATALSITY e vansparent D-
type lalches meaning thal while the enabie (G} it HIGH the
O putpests wil folow the data (0 inputs, ¥hen the enabio
is taken LOW the oulpul will be lalched &1 e level of the
data thast was 61 up

The > fig-lops of the DMTILSITE &e edge-iiggered
D-type fip fiops. On the positive ransion of the cock, the
O outpits wil ba set 10 the logs: states thal ware set up at
the D inputs.

A buffared outped control inpul can be used fo place the
aighl sulpuls in slhed & nermal logic stale (HBGH of LOW
logic levets) of a high-impedance state. In e high-mped-
ance state ihe outputs nethes ioad nor drive the bus ines

The output control does not asiect the internal operation of
the lbches o Mip-eps. That is, M o dala can be
Tetained of niw data can be entered even while the oulputs
are OFF

Apri 1926
Foevised March 2000

Features

= Choice of & isiches or & D-type fip-flops in a single
package

» 3-5TATE bus-drving outputs

 Full parabel-access for loading

 Buftered contrad inputs

» PN-F inputs reduce D-C loading on data lines

Ordering Code:

Grder Humber | Package Number | Package [
DT ALE37 T [Lead Small Quling Inegrated CHcul (S0IG], JEDEG MS-013, 0 300 Wes
DMT4LEITISS M200 Lead Smal Outine Package (SOF), EIAJ TYPE Il 5.3mm Wise
DMT74LEITIN N20A Zﬂ-lm P‘lxllc Dwakn-Line Package (POIF), JEDEC MS-001, 0.300 Wida
DREFALESTaw (P17 Guline inegrated Circul (SOIC), JEDEC MES-013, 0350 Wioe
DMTALSIT4S) M200 utine Package (SOF), ELAJ TYPE II, 5 Jmm Wide

pa1aBBiiL-abp3 pue sayoie ualedsuey) adAL-q €190 ALVLS-E FLESTHLNG « £LESTFLNG

Other Datasheets

Describe pinout and behavior of the
devices used in each lab

8JCLEMSON

”v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER EN GINEERIN G

Lab 1: Intro

ECE 3720

Lab 1 Program

* Navigate to the Lab 1 module in Canvas and
download Lab1.X.zip

e Extract the Lab1.X project folder to your profile.

* Open MPLAB X, then click File > Open Project...
and select and open the project.

* Under the Projects tab on the left side of the
screen, expand Lab1 and Source Files. You

should see main.c. Double-click on it to open it.

e Observe how this program counts from 0 to 15,
outputting the value on Port B

e Lab 2 will cover the details of how this works.

\SB

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

a MPLAE X IDE +5.40 - Lab1 : default

File Edit View Mavigate Source Refactor Production Debug Team Tools Window Help

PEESDE

- |default

AN M

@" PCUJ@

Projects XI Files I Classes

=l

StartPage =x I_E"] main.c x]

C-E Labl
-- Header Files
ﬁ Important Files

. Linker Files

I}J Source Files
L rE‘I main.c
. {[§ Libraries
- [(F Loadables

[l Lab2

- Lab3

165 Labs

- [Labs

[l Lab7

- LabTest

Source | History '@|@ o v |IE‘IE_L”5IEI

e B

1 #include <plib.

2

3| B delay(){

4 int i, 3:

s for(i = 0; i < 500; i++)

[for(j = 0y 3 < 500; j++):

7 -}

e |

8|] main{){

10 int count = 0;

11 TRISEB = 0Ox00; Set all pi T tput
12

13

14 while (1) {

15 LATE = count; tput t to B
1& count++;

17

18 if(count > 15) Eestrict count to 0-15,
1% count = 0;

20

21 delay():

22 }

23 =}

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Programming the Microcontroller

* Click the hammer icon (Dﬂf) to build the program.
* You will see warnings in the output window about outdated libraries. You can ignore these.
* Look for the green Build Successful.

e Connect the Cmod to the PGM (see below) and plug the PGM into your computer’s USB port.

* To load the program onto the microcontroller, click Make and Program Device (

* |f asked to choose a device, look for the chipKIT device at the bottom of the list.

* Watch the output window to see when the process is complete (it may take a while the first time).

* Notice that the program is built as part of this process.
The arrow on the PGM should be
closer to the side of the Cmod with
this 1 label.

N\

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab 1 Wiring

+5Y _
ChipKIT Cmod

* Power (5-12V) should be supplied to pin 1 of the Cmod, 1 (VIN) (GND) 40
=12 3.3V} (GND) 35
labeled VIN —3(=5v) (BB 3B
_— :-:1 (B9 |B7) g? —
* Pins 39 and 40 should always be grounded. i R .
= 7 (CH) iCs) 34—
. . e b= al
* Pins 20-23 should be connected to LEDs to display the DS B]
output. — 10 (B10) (AZ) 31—
_ o _ —11 (E11) (A4)30f
* These pins correspond to the 4 least-significant bits of Port B — 12 (Bl2}) (B4)29
— 13 (B13) (NC)2B[—
— 14 (A10}) (AB) 27—
—{ 15 (A7) (C2) 26—
—16iB14} (Cl)25p-
= 17 (B15} (CO)24p=
— 18 (A0} (B3] 23
—11%Al) (B2 22
20 (BO) (B1) 21

' 4

Note that you will not be given the wiring for future labs. The slides Y |E\ ‘E\

will provide a simple diagram showing the inputs and outputs, and
you will have to submit a more detailed diagram as your pre-lab.

GJCLEMSON

"’v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab 1 Modification

Once you have the program running on your microcontroller, attempt the following:
* Modify the code to count backwards, looping from 0 back up to 15.

* Modify delay to take a longer or shorter period of time.

10

GCLEMSON

Lab 2: Application of a Digital Latch

ECE 3720

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

The microcontroller will read two digital inputs and output those same values to a latch. When a button is
pressed, the latch outputs will be updated to mirror the inputs. The states of the latch’s inputs and outputs will

be indicated by LEDs.
e side_

Creating a new MPLAB project

Latches vs Flip-Flops 3
SN74LS373 4
I/O Registers (TRIS, LAT, PORT, ANSEL) 5
Push Buttons 9
Pull-Up and Pull-Down Resistors 10
Active-Low vs Active-High 11
DIO 12
Voltages 13
14
18

Lab Goals

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Latches vs Flip-Flops

* Both latches and flip-flops are storage elements for holding a binary state.

* Latches are level-sensitive, while flip-flops are edge-sensitive.

D Latch D Flip-Flop

” D

En

[Latch [Latch

O

e LTt
_DO_L_}—}'— @' R

* While En is HIGH, Q mirrors D. * Qupdates to match D on rising edge of CLK.
* When En is LOW, Q remains constant. * Consists of two D latches
* This is what will be used in this lab. * Useful for sequential circuits, since it will only

update at the times determined by the clock.

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

SN74L5373

Function Tables
e Datasheet available here We use this » ’LS373,'S373
(each latch)
* Notice that this datasheet covers multiple devices, Output updates as INPUTS OUTPUT
including both latches and flip-flops. long as C s HIGH oc ¢ b a
L H H H
* Use the datasheet to learn the behavior and pinout of L H L L
the SN74LS373 L L X Qg
* Notice that the pins are arranged in a Q-D-D-Q-Q... pattern H X X z
Not this » 'LS374,’S374
(each latch)
The eight latches of the "LS373 and 'S373 are Output updates on INPUTS oUTPUT
transparent D-type latches, meaning that while rising edge of CLK OC CLK D Q
the enable (C or CLK) input is high, the Q outputs L n H H
follow the data (D) inputs. When C or CLK Is taken .
low, the output is latched at the level of the data - L L
that was set up. L L X Qo
H X X z
SN74LS373 datasheet, pg. 1

SN74LS373 datasheet, pg. 3

https://www.ti.com/lit/ds/symlink/sn74ls373.pdf

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Registers

e Every lab in this class will involve setting the values of the 11.1 Parallel /O (PIO) Ports
PIC32’s registers to achieve the desired behavior. All port pins have 10 registers directly associated with
* In particular, the 1/0 registers detailed in the following slides will be some of their operation as digital [/O. The data direction register

(TRISx) determines whether the pin is an input or an

the first things to consider for each lab. output. If the data direction bitis a "1’, then the pin is an

* Register names refer to memory locations, defined through plib.h. input. All port pins are defined as inputs after a Reset.
. . . Reads from the latch (LATx) read the latch. Writes to
» Xbits functionality the latch write the latch. Reads from the port (PORTx)
o : . . . d the port pins, while writes to the port pi ite th
* Type “bits.” after a register name in MPLAB to see a list of individual bits Ir:t?:h © port pins, while wities 1o The port pins witie the
from that register. '
* This is often preferable, since it improves readability and lets you address PIC32 datasheet, pg. 144

individual bits, leaving the others unchanged.

TRISEBbits=.
B TRISEO unsigned
B TRISE1 wunsigned

B TRISBE10 unsigned
B TRISBE11l unsigned
B TRISBE12? unsigned
B TRISB13 unsigned
B TRISB14 unsigned
[TRISE15 unsigned
B TRISB2Z unsigned

CLEMSON

“" 'HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Data Direction

* Use TRISx registers to designate pins as inputs or outputs. 11.1 Parallel I/O (PIO) Ports
* wherexisA,B,orC All port pins have 10 registers directly associated with
« TRIS is short for “Tri-State” their operation as digital /0. The data direction register
(TRISx) determines whether the pin is an input or an
. T . output. If the data direction bitis a "1’, then the pin is an
Set bItWISe’ 1 for mpUt’ 0 for OUtpUt input. All port pins are defined as inputs after a Reset.
* (“Input or Output”) Reads from the latch (LATx) read the latch. Writes to
the latch write the latch. Reads from the port (FORTx)
read the port pins, while writes to the port pins write the
latch.
TEISE = Qb00O0O01111; S Set BO-B3 as inputs and B4-B7 as outputs PIC32 datasheet, pg. 144
TEISE = (x0F; // Equivalent
TRISE = 15; "/ Equivalent

TRIS5Bbits.TEI
TRIS5Bbits.TERI

Read / Write

e Read from PORTX

* When a pin is designated as an input, reading the corresponding bit of
PORTx will return the value on that pin.

CLEMSON

“" 'HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

int x:
*x = PORETALits.EBLO:

L]
i
I
3
1
i

* Write to LATX

* When a pin is designated as an output, writing to the corresponding bit of
LATx will output that value on the pin.

11.1 Parallel I/O (PIO) Ports

All port pins have 10 registers directly associated with
their operation as digital /0. The data direction register
(TRISx) determines whether the pin is an input or an
output. If the data direction bitis a "1’, then the pin is an
input. All port pins are defined as inputs after a Reset.
Reads from the latch (LATx) read the latch. Writes to
the latch write the latch. Reads from the port (FORTx)
read the port pins, while writes to the port pins write the
latch.

LAaTChits . LATCO = 1; f/Write a 1 (HIGH)tc

int v = 12;

Frf Write the walnie oF wariable w e =t rh B
LATE = ! ff WILTE ne =1 = ol = = c - a 5D

LATChits . LATCO = PORTAbits.RAO; /) What does this

PIC32 datasheet, pg. 144

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Analog Select

11.1.2 CONFIGURING ANALOG AND
DIGITAL PORT PINS

The ANSELx register controls the operation of the
analog port pins. The port pins that are to function as

* Use ANSELx to set pins to analog or digital mode.

* Ofor digital, 1 for analog analog inputs must have their corresponding ANSEL

* We will typically use digital. and TRIS bits set. In order to use port pins for I/O

functionality with digital modules, such as Timers,

* Use reference manual to determine which pins are analog UARTS, efc., the corresponding ANSELx bit must be
capable. cleared.

The ANSELx register has a default value of OxFFFF;
therefore, all pins that share analog functions are
analog (not digital) by default.

BNSELE = O: ff Set all B pins to digital PIC32 datasheet, pg. 144
AMNSELEBLits.ANSED = 1; // Set BO to analog mode

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Push Buttons

Illustration of Internal Connection

Push Button (not pressed)
- 1 ANNB—
L Hs
g A
=
Push Button (pressed)
- 1 ANNBE—
-)ﬁ
‘ AMNN—PBE— Connected when
< button is pressed

Notice that the top LED in this setup is always
connected to the voltage source, but the bottom is
only connected when the button is pressed.

Always connected

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Pull-Up and Pull-Down Resistors

* If a microcontroller’s input pin is left AR I
floating, it may not read the correct - B - B
digital value. Pull-down | 7] i _ -
. Pin is pulled LOW | 50 @@ - +—&"0 %
* Pull-up and pull-down resistors should until button is
be used to ensure consistent behavior. pressed e e
Floating (incorrect)
Pin has indeterminate value CBKIT Croad chipkIT Cmod
until button is pressed — — — —
Pull-up i B | B
e Pin is pulled HIGH | 5 — - +—5"o
_ o until button is o v i 4
i T i T 3o @@ pressed

10

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Active-Low vs Active-High

* An active-high signal is “on” when its voltage is HIGH.

* An active-low signal is “on” when its voltage is LOW.
* e.g., the Output Control (/OC) pin of the SN74LS373

* In this lab, we want the button’s output to be ACTIVE-LOW.

* This means the MC will read LOW when the button is pressed, and HIGH otherwise.
* Reference the diagrams in the previous slide to determine how to wire the button to achieve this.
* Since the button will be used to update the latch, consider what this means for the program you will write.

11

DIO (Digital Input/Output

* If using the NI-ELVIS II:

* Open the NI Instrument Launcher application and select Digital Reader.

* Click the switches to toggle the outputs HIGH or LOW.
* The DIO ports are located on the top-right section of the board.

* If using the Analog Discovery 2:

* Open the WaveForms application and select StaticlO.
* Click the drop-down arrow(s) and select push/pull switch.
* The DIO pins are labeled 0-15 on the AD2’s case.

W WaveForms (new workspace) -] X
Workspace Settings Window Help
Welcome |4 Help @ staticio £ ==l
File Control View Window |
15, 14, 13, 12, 11, 10, 9. | .
DIO - Y " Vi - - -
158 . | | | | | | | | | |
— — - / — A — -y -y .
7. O 6. O 5. O a. (0 3. O 2. O 1. O 0. O
DIO =1 =1 = 1 = 1 = 1 - 1 - 1 - 1
70 . i i Z Z - Z z z -z
Il -0 I -0 Il -0 Il -0 Il -0 Il -0 Il -0 Il -0
Manual Trigger | | Discovery2 SM:210321AE35F8 | |0 Status: OK

[M1 ELVIS e Instrusment Launchier

Instruments & Apps

Instruments & A

Arbitrary
Waveform
Generator

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Configuration Settings

Lines to Write
07 [
Pattern
Manual El
Manual Pattern -0

f] BOOO0O00T

Action Direction

Ee

Instrument Control

m Device Generation Mode
Dev1 (NI ELVIS IT) [=] Run Continuously [
Jigital Write
i Run Stop Help
= [=][e]
Function Oscilloscope 2-Wire Current-
Generator Vaoltage Analyzer
12

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

Notes on Voltages

* The PIC32 runs on 3.3V, but the Elvis board uses 5V logic.
* The chipKIT Cmod is powered by 5V, but uses a regulator to supply the PIC32 with 3.3V.

e Only some of the PIC32’s pins are 5V tolerant.
* Carefully read the pinout diagram in the reference manual to choose an appropriate pin.

* Pin 2 of the Cmod provides a 3.3V output.
* This is the output of the regulator that powers the PIC32.
* Do not short this pin to ground or apply a voltage to it.

chipKIT™ Cmod

RevE

Flash 128kB
RAM 32kB

Inputs are 3.3V tolerant.
" indicates 6V tolerant.

See sections 3 and 4 in the Cmod “Hardware

reference manual for details on the | NERGLLICEEEN T R0
o PIC32 Register ID | RCO8
power supply and 5V compatibility. Pmod Connector J1-10 RC09

=)

13

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Creating a new project

1. Open MPLAB X
2. Select File > New Project (or click) 4. Select 32-bit MCUs
3. Select Standalone Project and click Next 5. Select PIC323MX150F128D and click Next

4 New Project X B4 New Project X
Steps Choose Project Steps Select Device
1. (Choose Project Q, Filter: 1. Choose Project
2w 2. Select Device :
Categories: P 3. SelectHeader Family: 32-bit MCUs (PIC32) -
- - 4. Select Plugin Board
------ @ Microchip Embedded [=standalone Project 5. Select Compiler
...... i3 Other Embedded [Existing MPLAB IDE & Project & SelectProject Name and Device: PIC32MX 150F 128D v
. 103 samples ﬁ Prebuilt (Hex, Loadable Image) Project Folder
...... 3 Generic (5 User Makefile Project Tool: Mo Tool w | [] Show all

& LibraryProject
ﬁ Import START MPLAE Project
& Import Atmel Studio Project

(MPLAB

Description
Creates a new standalone application project. It uses an IDE-generated makefile to build your X I D E

project. v

< Back Finish Cancel Help < Back Finich Cancel Help

14

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Creating a new project

7. Name the project

8. Select a save location you can always access
6. Select the XC32 compiler and click Next 9. Click Finish

B4 New Project it B4 New Project *
Steps Select Compiler Steps Select Project Name and Folder

1. Choose Project 1. Choose Project .

2. SelectDevice Compiler Toolchains 2 :E‘i DE\";E Project Name: Lab2|

3. SelectHeader =B & ect Header

‘;- Select Plcugin Board KC32 (v2.41) [C:\Program Files (x86)\Micochipec32\w2.41'bin] ; g:g EI:H?SE?M Project Location: C:\Users\Dillon\MPLABXProjects Browse...

Select Compiler ;
. i 6. Select Project Name and
& Ejs:: Eioieck = Tollee Project Folder: |C:\Users\Dillon\MPLAEXProjects\Lab2.X

Owverwrite existing project,
Also delete sources.

Set as main project

[Use project location as the project folder
\MPLAB MPLAB

X IDE X
- -

Encoding: 150-8859-1 e

< Back Finish Cancel Help < Back Mext = Cancel Help

15

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Creating a new project

10. Right-click Source Files under project name

11. Select New > Other... 12. Select C and C Source File, then click Next

ﬂ MPLAB X IDE v5.40 - Lab2 : default B4 New File b4
File Edit View MNavigate Source Refactor Production Debug Team Tecols Window Help
. . . — — = Steps Choose File Type
: T [H S 0 [default ~ - - - - .5
: E . % - A T Eﬁb :ﬁ |> e :Zl. Choose File Type Project: | [Lab2 ~
Projects x| Files | Classes = Q Filter:
= Lab2
- . Header Files Categories: File Types:
ﬁ' Important Files -3 Microchip Embedded Al C Source File
(@ umkermiles oc] CMainFile
' o c++ E‘] C Header File
(& Libraries New @ Dpirectory.. | | L e [Assembler
-5 Loadable: New Logical Folder B csourceFile.. | | g Shillﬁslu'ipts
B[LabTest - ! k ----- Makefiles
Add Existing ltern... @ wcd2_headerh O 3 Python
Add Existing Iterns from Folders... @ k32 newfilec.. [N = ML
Find.. 9 TetFile. | N 0 D other
Cut Other... Description:
Copy A C file with no contents,
Paste Ctrl+V
Remove From Project
Rename...
Properties < Back Finish Cancel Help

After these steps have been done once,
New > C Source File will become an option. 16

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Creating a new project

13. Name the source file and click Finish 14. Make sure to include plib.h
(It is helpful to give each project’s source file a different name.) You can now write your program.
B New CSource File X B4 MPLAB X IDE v5.40 - Lab2 : default
jtep:h e — File Edit Wiew Mavigate Source Refactor Production Debug Tearmn Tools Window Help
. oose File Type File Name: |2main|

2. Name and Location oo [= ._IJF_,_] % |__ H';'—I default 9 ':EG - % - |> - E* o o

Set this Extension as Default

Projects x[Files [Classes [=] Start Page x@ 2main.c x]

Project: Lab2 Elg Lab2 Source | History '@ | B - & v| LEL %_Lu 5‘ D:l

Folder: Browse... -- Header Files

:) ¥include <plib.h>
Created File: |C:\Users\Dillon\MPLABXProjects\Lab2.X\2main.c ﬁ‘ IITII:IEIFEI'It Files

i . Linker Files
E} . Source Files
Poobe @ 2main.c
{[& Libraries
ﬁ‘ Loadables
B LahTest

A= W [
i
I
F
i
]
il
!
|
iT
iT

< Back Mext = Cancel Help

17

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

_ _ Simple Diagram*
* Read two inputs from DIO with the MC.

e Output those same values from the MC to both
the latch and the first pair of LEDs.

e Read an active-low input signal from a button.

* When the button is pressed, output a signal from
the MC to enable the latch.

e The second pair of LEDs, connected to the latch
outputs, should update to match the inputs
when the button is pushed.

Enable

ELESTIVL

2
=—yfp [LEDs

[LEDs
*Your pre-lab diagram must include the
specific pins to be used, as well as resistors,

connections to power and ground, etc.
18

GCLEMSON

Lab 3: Comparators
ECE 3720

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

A variable, analog voltage will be produced with a potentiometer and connected to three inputs of the
microcontroller. Each of the PIC32’s three comparators will be set up to compare this input with a different reference
voltage. The states of the comparators’ outputs will be indicated by LEDs, such that turning the potentiometer
clockwise will light up the LEDs in succession.

e lside_

Analog Capable Pins 3
Potentiometer 4
Comparators 5
Lab Goals 8
Notes <)

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

Analog Capable Pins

* This is the first lab in which we will use the analog capabilities of the
PIC32.

* Only some pins of the PIC32 can read analog voltages.
* Refer to the pinout diagram in the Cmod reference manual to identify these pins.
* Note that none of these are 5V tolerant.

* Recall that the ANSELXx registers are used to set pins to analog or
digital mode.

RB13 A11 [ks {Jb

941

analogRead()

sy A ==

PA0T | Al
yalo) araeamad
OGO Rei vilo, 2012-2015 202 RB00 | A2

Blue boxes indicate analog capable pins

11.1.2 CONFIGURING ANALOG AND
DIGITAL PORT PINS

The ANSELx register controls the operation of the
analog port pins. The port pins that are to function as
analog inputs must have their corresponding ANSEL
and TRIS bits set. In order to use port pins for /O
functionality with digital modules, such as Timers,
UARTs, efc., the corresponding ANSELx bit must be
cleared.

The ANSELx register has a default value of OxFFFF;
therefore, all pins that share analog functions are
analog (not digital) by default.

PIC32 Datasheet, pg. 144

GCLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Potentiometer

* Variable resistor

e Oursis a 10 kQ trimming potentiometer (“trimpot”). Notice that pins 1

and 3 are labeled

* Three pins on the top face
1. Minvoltage (GND)
2. Output

3. Max voltage (3.3V)

e Turning the knob clockwise increases resistance
between pins 1 and 2.

WIPER

CLOCXWISE ———=

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Comparators

* Compare two input voltages, outputting logical HIGH or LOW depending on which input is greater

* The PIC32 contains 3 comparators
* We will use all 3 in this lab, each set up to compare the input from the potentiometer to a different voltage.
* This will be accomplished by using the registers detailed in the next two slides.

B —

Input
Output Non-Inverting > Inverting 1
“Non-Inverting”
input + Non-Inverting < Inverting 0

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Comparator Registers

The following are the registers of interest for this lab. You will need to

CHMICCHbits.CH = 1;

reference their sections in the datasheet. CM1CONbits.
B ccH __uint32 t
 CMxCON (datasheet pg. 212) g:::ﬂ __uint32_t
CCH1 uint32 t
* Control registers for each comparator (xis 1, 2, or 3) O coE _ uint32 t
EcouT _ uwint32 ¢

* Used to control the values in and out of the comparators

B croL wint3z t

H CREF uint3z t©

* CMSTAT (pg 213) D EVEOL _ uwint32 ¢
* Status register that holds the output values from all 3 comparators g Eif‘ —Eizzgi—z

B on uine32 ¢

* CVRCON (pg. 216) B w " uint32 ¢

* Control register used to set the comparator reference voltage (CVgg)
* You will set the values of CVRSS, CVRR, and CVR
e We want CVi = 0.75 * CVpere

CVgsre Will be the difference between Vi, and Vi, which you will supply
externally.

* Note that you cannot achieve exactly 0.75 * CVgs ¢, but you can get close.

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Comparator Setup

The following are the comparator input combinations used in this lab:

CMP1: Vi as inverting input and C1INA as non-inverting

CMP2: C2IND as inverting input and VCg as non-inverting

CMP3: C3IND as inverting input and C3INA as non-inverting

This is only 1/3 of
the full diagram
in the datasheet.

Notice that the values in CMXCON control

the multiplexers and the output polarity

C3INB Z|7 CCH=1:0=
C3INC []
F
C3IND Ei
CREF
C3INA[X]
{1
CVRrerF Note 1:
Vreel2) 2:

CMSTAT<C30UT=
CM3CON=<COUT=

CPOL

Internally connected. See Section 23.0 “Comparator Voltage Reference
(CVRer)" for more information.

Internal precision voltage reference (1.2V).

~ COE
CMP3 D L o)’ o—{x] c3ouT -y

SN

We can’t access this right now,
so where else can we find the
comparator output?

PIC32 datasheet, pg. 211

8JCLEMSON

‘”v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

e Output of the potentiometer will connect to 3
inputs of the MC.

Simple Diagram

< . Potentiometer

chipKIT Cmod

e 3 LEDs will be connected to outputs of the MC,

. =
and indicate the statuses of the comparators.
* As the potentiometer is turned clockwise and <
the output voltage increases, the LEDs turn on in < TR VPSat 3V

sequence.
— 3-3V

Out=0V Out=IVg; Out=CVge Out=3V

] (.]
] 1 1]
]

(.
1
1

v » [LEDs

1]

*not exact trimpot positions

ODOOOOOOO

Notes

Recall that the Cmod has a 3.3V output on pin 2.

C1INA, C3IND, Vi, , etc. correspond to specific pins on
the MC. Look them up in the reference manual.

VPS (variable power supply) on NI-Elvis II:
* Qutput located in bottom-left section of Elvis board
* Controlled through the NI Instrument Launcher

If using the AD2, you can supply 3V to C3INA and power
the MC over USB.

Your code will feature a bunch of register setup before
the while loop, then just a few lines inside the loop.

If your LEDs turn on in the wrong order or at the wrong
voltages,

* Make sure you are connecting the right pins

* Make sure you are supplying 3V (not 3.3V) to C3INA

* Check your CVRCON values (CVg¢ may be incorrect)

* Comparators’ polarities may need to be flipped

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Arbitrary B Dig Lacer Digital Wi
Waveform
Generator
Function Oscilloscope 2-Wire Current.
Generator altage Analyzer
Impedance Vastiable Power Digital Waveform &-Channel Audio Equalizer
Tty e Supplies Viewe scillas
DC Lewvel Octave Analyzer Add tem
W WaveForms (new workspace) — O e
Workspace Settings Window Help
Welcome [+ Help | supplies [£) =]
File Control Window =
8 Master Enable is OFf
/ Positive Supply (V+) Rdy | Voliage: & v
[Tracking
X Negative suppy () 0ff | Voge: s 9
USE powered, allowing up to 500 myV total or 700 mA output per channels.
|:| System Monitor
Manual Trigger | | Discovery2 SM:210321AE35F8 | |7 Status: OK .

Lab 5: Interrupts
ECE 3720

8JCLEMSON

‘”v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

The MC will count from 0 to 15 as in Lab 1, but with the addition of an interrupt that will turn on all the LEDs
for a few seconds. Afterwards, the counting will resume where it left off. The interrupt will be triggered by a
debounced button.

e side
Interrupts
Interrupt Registers
ISR
Setting up the interrupt

Debouncing

© 60 N [& W

Lab Goals

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Interrupts

When an interrupt is triggered,

1. MC halts main work and saves state
2. MC finds and executes interrupt service routine (ISR)
3. MC restores main state and continues operation

Possible interrupt sources include external pins, timers, and other peripherals.

Interrupts remove the need to repeatedly check values while waiting for event.
* Constantly checking like that is called “polling”, and it’s what we did in Lab 2.

* Once an interrupt is set up, it is handled automatically by the microcontroller

* You will use registers to tell the MC what triggers the interrupt, and write an ISR to tell the MC what to do when it occurs.
* You will not call the interrupt function at any point.

* You will not check the value of a pin. PICI2MX1XX/2XX devices generate interrupt requests
In response to interrupt events from peripheral modules.
The interrupt control module exists externally to the CPU
logic and priontizes the interrupt events before
presenting them to the CPU.

PIC32 datasheet, pg. 87

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Interrupt Registers

The following are the registers of interest for this lab
IECx (datasheet pg. 92)

* Used to enable or disable particular interrupts

INTCON (pg. 90)

* We will use this to set edge polarity of external interrupts

* |If set torising edge, the interrupt will trigger when the pin transitions to HIGH

IFSx (pg. 92)

* Interrupt flag status register

* Every interrupt has a “flag” that goes HIGH when the interrupt is triggered
* The flag must be cleared before the interrupt can trigger again

IPCx (pg. 93)

* Interrupt priority control register

* 1is highest priority, 7 is lowest
* A priority of 0 effectively disables the interrupt
* Sub-priority does not matter for our purposes

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Interrupt Bit Locations

* Table 7-1 (on pg. 88 of the datasheet) provides the necessary information for using each interrupt.

* This is an important resource. You will want to refer to it again in future labs.
* Note that the number in the register name may not match the number in the peripheral name.

* The vector number identifies the interrupt source, and will be used when writing your ISR.

TABLE7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

1 IRQ |Vector Interrupt Bit Location Persistent
Interrupt Sourcel?) 4 4 I
Flag Enable Priority Sub-priority | Interrupt
Highest Natural Order Priority
CT — Core Timer Interrupt 0 0 IFS0<0= | IECO=<0= | IPCO<4:2> IPCO=1:0 Mo
C50 — Core Software Interrupt 0 1 1 IFS0<1> | IECO<1> | IPCD<12:10= | IPC0<9:8> Mo
C51 - Core Software Interrupt 1 2 2 IFS0<2= | IECO<2> | IPC0=20:18> | IPCO=17:16> Mo
INTO — External Interrupt 3 3 IF50<3> | IECO<3> | IPCO<28:26> | IPCO<25:24> Mo

PIC32 datasheet, pg. 88

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

ISR (Interrupt Service Routine)

e Tells the MC what to do when an interrupt occurs

» Use the following macro to identify the interrupt source:
__ISR(vector, ipl)

* Note that there are two underscores
* The first argument is the vector number for the interrupt source
* We can omit the second argument, which sets a priority level

* Write your ISR function, with _ISR() between the return type and function name.

* The interrupt takes no arguments and returns no data, so both are void.
* Make sure to clear the correct interrupt’s flag at the end of the function.

vold ISE{ vector } exampleFonction (void)

— The function name
can be anything

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Setting up the interrupt

You must include the following line to enable interrupts:
INTEnableSystemMultiVectoredint();

In this lab we will use External Interrupt O (INTO).
* One of 5 external interrupts on the PIC32

* INTO is the only one hard-mapped to a particular pin (find it in the reference manual) INTO is mapped to this pin on
the PIC32, but it has a different
number on the chipKIT Cmod

Use the registers in slide 4 to set the priority and polarity of INTO, then enable it.

* It’s also good practice to clear the interrupt’s flag when setting it up.

Then Write your ISR as Shown on the preViOUS Slide. TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)
Pin Number{1)

* Make sure you don’t put it inside your main function.

28-pin 44-pin | Ppijn uffer

PinName| 2g.pin | SSOP/ | 36-pin | QFN/ y Type Description

QFN SPDIP/ | VTLA TQFP/

soic VILA
INTO 13 16 17 43 | ST |External Interrupt 0

, , . INTT PPS | PPS | PPS | PPS | | ST |External Interrupt 1

PPS (Peripheral Pin Select) indicates that INT2 PPS pps | pPS | PPS , ST |Exteral Interrupt 2
the peripheral can be mapped to a variety e PRE PRE===—FP&=J> PPS | ST | External Interrupt 3
INT4 PPS | PPS | PPS | PPS | | ST | Extemnal Interrupt 4

of pins. This will be covered in Lab 6.

PIC32 datasheet, pg. 21

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Debouncing

* Switches have a tendency to bounce rapidly between HIGH
and LOW when first toggled.

* This can be addressed with both hardware and software 1 ki

WVCC

* We will implement the debouncer seen at right using the —

SN74LS00 and a SPDT (single pole, double throw) switch. Q
SPDT switch

* This is an example of an SR (set-reset) latch

. Q |Q Jﬁ
* When the switch transitions between throws, the pull-up resistors and
NAND gates ensure the output remains unchanged it settles

* Connect one of the outputs to INTO }7 Q'

You can wire both outputs to LEDs first to check their behavior Lk

WVCC

Switch output bouncing f++
between LOW and HIGH

http://www.ti.com/lit/ds/symlink/sn74ls00.pdf

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

e Recreate Lab 1, but with an interrupt that causes
all the lights to turn on and stay on for a few
seconds.

Simple Diagram

chipKIT Cmod

2

* The interrupt should be triggered by the —pf— SPDT switch

debounced output of the SPDT switch.

O00SIVLNS

* When the interrupt ends, the MC should resume
counting where it left off.

Debouncer

v » [LEDs

Lab 6: Peripheral Pin Select

ECE 3720

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

Peripheral Pin Select will be used to enable a second external interrupt. The two outputs of a rotary encoder

will trigger the interrupts, causing a count variable, displayed on LEDs, to increase or decrease depending on
the direction of rotation.

T T
Peripheral Pin Select (PPS)
Using PPS
Grayhill 61C Optical Encoder
Lab Goals

O N O b~ W

Determining Direction of Rotation

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Peripheral Pin Select (PPS)

* Peripheral Pin Select allows the inputs and outputs of certain peripherals (such as timers or external
interrupts) to be mapped to various external pins.

e Recall thatin Lab 5 we only used the one interrupt already mapped to a pin.
* In this lab, you will use PPS to access an additional external interrupt.

» See section 11.3 (pg. 145) of the PIC32 datasheet for details on PPS.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) The Peripheral Pin Select (PPS) configuration provides

Pin Number(") an alternative to these choices by enabling peripheral
_ 28-pin 44-pin | pin | Buffer . set selection and their placement on a wide range of
PinName| 2gpin | SSOP/ | 36-pin | QFN/ | Type | Type Description /0 pins. By increasing the pinout options available on
QFN | SPDIP/ | VTLA | TQFP/ : : . i

SOIC VTLA a particular device, users can better tailor the device to

iNTO 13 16 17 1 | ST |External Inferrupt 0 theu_ er_ltlre appllcatluq, rather than trimming the

INT1 PPS PPS | PPS | PPS [ST |External Interrupt 1 application to fit the device.

INT2 PPS PPS PPS PPS I ST |External Interrupt 2

INT3 PPS PPS PPS PPS I ST |External Interrupt 3 PIC32 datasheet, pg. 145

INT4 PPS PPS PPS PPS I ST |External Interrupt 4

PIC32 datasheet, pg. 21

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Using PPS (method 1

* You can remap pins with the following macros:
PPSInput(grp, fn, pin)
PPSOutput(grp, pin, fn)

grp (“group”) refers to the box in column 4 of table 11-1 or
11-2.

fn (“function”) is the name of the peripheral
* Col. 1 of table 11-1 or col. 4 of table 11-2

pin is the name of the pin
* Col. 4 of table 11-1 or col. 1 of table 11-2
* RPin RPxx stands for “remappable pin”

TABLE 11-1: INPUT PIN SELECTION

N " N N - [pin name]R Value to
Peripheral Pin [pin name]R SFR [pin name]R bits RPN Pin Selection
] 0000 = RPAD
INT4 INT4R INT4R=3:0= 0001 = RPB3
o010 = RPE4
T2CK T2CKR T2CKR=3:0= 0011 = RPB15
o100 = RPET
; o101 = RPCTE
Ica IC4R IC4R=3:0= ou0=RPCIY <
0111 = RPC512
551 SS1R SS1R<3:0> 1000 = Reserved
REFCLKI REFCLKIR REFCLKIR=3:0= -
1111 = Reserved
. oooo = RPA1
INT3 INT3R INT3R=3:0= 0001 = RPE5
: o010 =RPB1
T3CK T3ICKR T3CKR=3:0= 0011 = RPE11
o100 = RPES
1c3 IC3R IC3R=3:0= 0101 = RPAS®
0110 = RPCER
UicTs UICTSR UICTSR=3:0> 0111 = RPAQ(2) <<
1000 = Reserved
UZRX U2RXR U2RXR=3:0= -
sDi SDIR SDIR=3:0> 1111 = Reserved
INT2 INT2R INT2R=3:0= 0000 = RPA2
0001 = RPBG
TACK TACKR TACKR<3:0+ 0010 = RPA4
K 0011 = RPB13
Ic1 IC1R IC1R=3:0= 0100 = RPE2
Ics ICSR IC5R=3:0= 0101 = RPCE::: 4
0110 = RPC1
UIRX U1RXR U1RXR=3:0> 0111 = RPC3M)
UZCTS U2CTSR U2CTSR<3.0= 1000 = Reserved
sDI2 SDI2R SDI2ZR=3:0=
OCFB OCFBR OCFBR=<3:0> 1111 = Reserved
0000 = RPA3
INT1 INT1R INTIR=3.0= 0001 = RPE14
o010 = RPED
T5CK T5CKR TECKR=3:0= 0011 = RPB10
o100 = RPEY
o101 = RPCEM 4
Icz IC2R IC2R=3:0= o110 = RPC212
0111 = RPC42
522 SS2R SS2R=3:0> 1000 = Reserved
OCFA OCFAR OCFAR=3:0= N
1111 = Reserved

PIC32 datasheet, pg. 146

Group 1

Group 2

Group 3

Group 4

CLEMSON

“" 'HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Using PPS (method 2)

* The second method is explained in sections 11.3.4 Peripheral Pin [pin name]R SFR [pin namelR bits [pin namelR Value to

RPn Pin Selection

and 11.3.5 of the datasheet (pgs. 145-148). 2000 = RPAD

INT4 INT4R INT4R<3:0> 0001 = RPB3
0010 = RPB4

* Refer to tables 11-1 and 11-2. To map a peripheral’s T20K T2CKR TICKR<30> |0011=RPBIS

0100 = RPBT

input/output to a pin, write the corresponding value s car C4R<3.0- 0101 =RPC7()

0110 = RPCOM

from column 4 to the control register in column 3. 0111 = RPCS

551 SS1R S81R<3:0> 1000 = Reserved

REFCLKI REFCLKIR REFCLKIR=<3:0= . _
1111 = Reserved

PIC32 datasheet, pg. 146

These are just the first sections of | TABLE11-22 OUTPUT PIN SELECTION

.) . RPNR Value to Peripheral
each table. Look in the datasheet RPn Port Pin RPnR SFR RPNR bits " ection
for the full tables. RPAD RPAOR RPAOR<3.0> 0000 = No Gonnect
: 0001 = U1TX
RPB3 RPB3R RPB3R<3:0> 0010 = UPRTS
RPB4 RPB4R RPB4R<3:0= 0011 = S51
RPB15 RPB15R RPB15R<3:0 0100 = Reserved
<3:0> -
Example usage 0101 = OC1
RPB7 RPB7R RPB7R<3:0> 0110 = Reserved
0111 = C20UT
e . ~ i o RPC7 RPC7R RPC7R<3:0> =
TZCKR = 0b0110; // map Timer 2 ext input to CC 1000 = Reserved
RPCO RPCOR RPCOR<3:0>
EPB2E = (0b0001; // map UAET 1 transmit output to B3 .
’ S = RPC5 RPC5R RPCER<3:0> 1111 = Reserved
e e

PIC32 datasheet, pg. 148 5

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Gravhill 61C Optical Encoder

* Datasheet available here
* Used to track rotational position

* Pay close attention to the diagram and table on page 2 of the datasheet.

* Some of the resistors shown are internal and some are external.
* Notice how the two outputs represent position. One of them changes with each tick of the dial.

. Y
.
POWER +5v @
RR

CUTPUT A 1500

- 5%
OUTFUT B . @
N.O.
PUSHBUTTOM

SWITCH

|‘® Sy

@(?Gf)@

GROUMD

* External pull-up resistors required for operation.
8.2 k(1 is suggested for TTL; 3.3 k0 is suggested for CMOS.

61C datasheet, pg. 2 6

http://lgrws01.grayhill.com/web1/images/ProductImages/I-21-22.pdf

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

e Like Labs 1 and 5, a variable will count between 0
and 15 and be displayed on 4 LEDs.

* The count should loop from 15 back to 0 and from 0 up to 15.

Simple Diagram

chipKIT Cmod

* Unlike Labs 1 and 5, the count will not change automatically. Rotary encoder

* Use PPS to enable a second interrupt.
* Remember to pay attention to 5V tolerance

* Connect each output of the encoder to one
interrupt.

* Increment the count on CW rotations and decrement
on CCW rotations*®.

* Only modify the count in the ISRs

v » [LEDs
* This means the count variable must be global
* Do not save the previous state of the encoder

*Make sure to read the next slide for details
on how to determine the direction of rotation.

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Determining Direction of Rotation

* Pay close attention to the table from the 61C datasheet to

determine whether to increment or decrement count. Clockwise Rotation
: : : Position | Output A| Output B
* Each encoder output will have its own interrupt and ISR,
which will be triggered any time the output changes. !
* Remember to clear the flag at the end of the ISR. B .
* Since the rotations cause both rising and falling edges, the 3 : :

interrupts’ polarities will have to change accordingly.

* e.g, if aninterrupt was just triggered by a rising edge, it must next watch e Indicates logic high; blank indli{_:ﬂl'ﬂﬁ logic
for a falling edge. low. Code repeats every 4 positions.

* You will need to modify the interrupt’s polarity from inside the ISR.
T 61C datasheet, pg. 2

* For example, suppose the interrupt for output A is triggered:
* You can read A and B to get the current position. This is an example of gray code, since successive

* You know A just changed, so you can determine the previous position. values always differ by only one bit.

* Then you have enough information to modify count and update the
polarity.

8JCLEMSON

”v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER EN GINEERIN G

Lab 7: Timers

ECE 3720

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

One of the microcontroller’s timers will be set up and used to trigger an interrupt at frequencies corresponding
to musical notes. The interrupt will toggle the digital output to a piezo buzzer, causing it to produce the desired
notes, and play a song.

e lside_

Timers 3
Timer Registers 4
Timer Diagram 5
Piezo Buzzer 6
Code 7
Lab Goals 8
Notes 9

Timers

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

* The PIC32’s timers operate by counting up on every cycle of the clock. When a certain value is reached, an

interrupt can be triggered, and the counting resets.

e Timer 1 (type A)
* Datasheet pg. 151
* 16-bit (so max count value is OXFFFF)
* Includes real-time clock functionality (not used in this lab)

* Timers 2-5 (type B)
* Datasheet pg. 155
* Each individual timer is 16-bit
* Timers 2-3 and timers 4-5 can be combined to form 32-bit timers
* Even-numbered timer supplies the control logic
* Odd-numbered timer supplies the interrupt

Two 32-bit synchronous timers are available by
combining Timer2 with Timer3 and Timerd with Timers.
The 32-bit timers can operate in three modes:

« Synchronous internal 32-bit timer

« Synchronous internal 32-bit gated timer

« Synchronous external 32-bit timer

Note: In this chapter, references to registers,
TxCON, TMRx and PRx, use ¥ fto
represent Timer2 through TimerS in 16-bit
modes. In 32-bit modes, X' represents
Timer2 or Timerd and 'y’ represents Tim-
erd or Timers.

PIC32 datasheet, pg. 156

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Timer Registers

The following are the registers of interest for this lab. The diagram on the next slide shows how they are used.
* TXCON (datasheet pg. 152/157)

* Timer control register
* Enable/disable timer
* Select clock source

* Select prescaler value

* TMRx
* Holds the timer’s running count value
* Increments on each clock cycle (or every few cycles, depending on prescaler)
* You do not need to write to this register.

* PRx
* Holds value the timer should count to before resetting
* You will set this value to control how frequently the timer interrupt occurs.
* This value should only be changed in the ISR, or when timer is disabled.

CLEMSON

o HOLCOMBE DEPARTMENT OF HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

Timer Diagram

FIGURE 13-1: TIMER2-TIMERS5 BLOCK DIAGRAM (16-BIT) _ _ _
Data Bus<31:0> _ f Diagram for timers 2-5 is shown
{15:0,;H’ 15050 * Timer 1’s diagram is on pg. 151.
e The 32-bit timer diagram is on pg. 156.
Reset]
TMRX | sync
P Y < When TMRx == PRx,
T"ggerm comparalorx 16 * TMRx gets reset
B {k L : L
- — | * Corresponding timer interrupt is triggered
LA — - Select clock source
; P - - * We’'ll use the Peripheral Bus Clock (PBCLK),
TGATE / which is derived from the built-in system clock.
* The alternative would be connecting an
K IE % external source (TxCK).
Prescaler
g}?}‘i —11,2,4.8, 16, —
E 32.64.2% |« Prescaler divides the clock frequency
PBCLK ¢3 * e.g. aprescaler value of 4 would cause the

Note 1: ADC event trigger is available on Timer3 only. TCKPS timer to count 4 times SIOWGr than the CIOCk.

PIC32 datasheet, pg. 155 >

GJCLEMSON

“’v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Piezo Buzzer

A piezoelectric material changes shape when exposed to an electric field.

Changing the voltage across the buzzer at a high frequency causes the material inside to vibrate at the same
frequency, producing a note.

We will use timers to toggle an output voltage on and off at specific frequencies in order to play a song.

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Code

* For this lab you are provided a skeleton code (main_skeleton.c) which you #define C 3817

. fdefine C 3610
WI” Comp|ete. fdefine D_E‘ECIZ

fdefine D 3216

fdefine r 3000
fdefine a2 4545
fdefine b 4050

* The definitions at the top of the program (a through CC) represent the tdefine E 3031
periods of notes, in terms of PIC32 clock cycles. fdefine © 22866
fdefine F 2703
* Recall that period is the inverse of frequency. idefine © 2551
* See the “notes” slide for info on how these are calculated. fdefine G_ 2410
$define L 2273
* Definitions g through edot represent note lengths. g is a quarter note, e is E-: ‘;‘-—EE;EE
an eighth note, etc. fdefine CC 1011
. . $define g 400
* Notice you are given two arrays fdefine gdot g * 1.5

fdefine = oqf2

* delay is full of note lengths tdefine 5 /2

* music_notes contains notes in the order they are to be played fdefine t©32 s5/2
fdefine sdot s+t3Z2
* You do not need to change anything inside the while(1) loop fdefine h g2
fdefine hdot g4e
* The if statement steps through the notes of the song, remaining on each note until j reaches #dzf.____: cdot ;_IH
the value of delay[/] #define num notes 52

* Notice thatjis not changed anywhere in the given code. You must increment j somewhere.

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

e Connect the buzzer to an output of the MC with a
button in between so it only makes sound when the
button is pressed.

Simple Diagram

* Set up a timer using TXCON.

Button Buzzer
* Set up an interrupt triggered by your chosen timer.
* Use the interrupt to toggle the output (when you

want to play sound). This will produce a note
dependent on how frequently the interrupt occurs.

* The interrupt should also update the note being
played.

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Notes

* Middle C example:
* Middle C has a frequency of 261.6 Hz
* MCclock runs at ~2 MHz
* 2Mcycles/s * 1s/261.6 = 7645 cycles per middle C period
» Divide by 2 to get cycles per inversion = #define C 3817

* r, which appears in music_notes, represents a rest. No sound should be played when this is the current note.

e Consider the possible values to be loaded into PRx. Will a 32-bit mode timer be necessary?

Lab 8: Pulse Width Modulation

ECE 3720

8JCLEMSON

‘”v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

The output compare peripheral will be used to produce a PWM signal to control the speed of a motor via a
motor driver. A button-triggered interrupt will be used to select the duty cycle of the PWM signal.

N
Pulse Width Modulation (PWM)
Output Compare (OC)

OC Diagram

Using OC for PWM
L293DNE

Lab Goals

0 IN o o [~ W

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Pulse Width Modulation (PWM)

* By turning a digital output on and off in a regular pattern, an average voltage can be produced that is
proportional to the percentage of time the output is HIGH.

* The percentage is called the duty cycle, as seen below.

* This is used to control the speed of DC motors, the position of servos, the brightness of LEDs, etc.

50% Duty Cycle
50%
On 50%
Off

75% Duty Cycle
75%

On 25%
Off

25% Duty Cycle
25%
On 75%
Off

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Output Compare (OC)

* The PIC32 does not have a dedicated PWM peripheral. However, the output compare peripheral can be used
to generate PWM signals.

e Output compare works with the MC’s timers to trigger an event at a specified point the timer’s cycle.
* Recall that the timer counts up in the TMRXx register until it reaches the value in PRx.
* Similarly, output compare triggers an event when TMRx matches OCxR

Registers:
* OCxCON (datasheet pg. 164)

The Output Compare module is used to generate a sin-
gle pulse or a train of pulses in response to selected

* Used to enable OC, select the timer, and select the mode of operation time base events. For all modes of operation, the Out-
put Compare module compares the values stored in
* OCxR the OCxR and/or the OCxRS registers to the value in

the selected timer. When a match occurs, the Output
Compare module generates an event based on the
selected mode of operation.

* Holds the value to be compared to TMRx
* Similar to PRY, this register should not be written to while the timer is running

* OCxRS PIC32 datasheet, pg. 163
* Copies its value to OCxR when previous PWM cycle completes
* You should write the desired OCxR value here

CLEMSON

“" HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

Output Compare Diagram

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM
Set Flag bit
oCxF
- A
OCxRS is copied > f—

to OCxr
l? i‘%) OC output can be

M OCxRM — Qs e 00K e mapped to a pin
%ir ¢3 A Output__[OUipul Enable with PPS
Enabie Logic
OCxR is compared o [Comparsor Mode Select A 1<) ocraorocre®
to timer value

_________________ e~ Values in OCXCON select

Timer2 Timer3 Timer2 Timer3 timer and output logic
Rollover Rollover

Note 1: Where ¥ is shown, reference is made to the registers associated with the respective output compare channels,
1 through 5.
2: The OCFA pin controls the OC1-0C4 channels. The OCFB pin controls the OC5 channel.

PIC32 datasheet, pg. 163 5

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Using OC for PWM

e The OC’s PWM mode can be selected in OCxCON. Note that we do not need fault detection for this lab.
» Use peripheral pin select (covered in Lab 6) to map OC’s output to a pin.

* The diagram below illustrates how the timer and OC registers are utilized in PWM application.

Figure 4-17: PWM OQOutput Waveform
. Period .
-y -
] I — —
i} ! : :
! Duty Cycle) ' '
f ? f ? Compare this
lagram h
TMRy = PRy TMRy =0CxR TMRy=PRy TMRy=0OCxR diagra t.o the
one on slide 3
Generate TylF =1 Generate TylF = 1
(Interrupt Flag) (Interrupt Flag)
Load OCxR with OCxRS Load OCxR with OCxRS

PIC33 Output Compare reference manual, pg. 26 6

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

L293DNE

» Datasheet available here NE Package
. _) 16-Pin PDIP

e Rather than attempt to drive a motor with the PIC32’s Top View

limited output power, we use a motor driver IC.

. . . . 1,2EN [] 1 U 16|] Vot

* Power for the motor is supplied to the driver, while the 1A 2 15[] 4A

MC provides the PWM input that will control the driver 1v |3 14] 4Y

output and the motor’s speed. HEAT SINK AND { 04 13] } HEAT SINK AND
* You will want to reference the pin descriptions on GROUND 1_[]5 12[] ' GROUND

page 3 of the L293 datasheet, and the functional block 2"’ [6 1] 3y

diagram on page 7. 7 1of3a

VCEE [8 9] 3.4EN

L293DNE datasheet, pg. 5

https://www.ti.com/lit/ds/symlink/l293d.pdf?ts=1595515716405&ref_url=https://www.ti.com/store/ti/en/p/product/?p%3DL293DNE

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

e Set up the output compare an timer peripherals to
output a PWM signal to the L293DNE.

* OC should not be enabled before the timer.

Simple Diagram

Button

* Neither should be enabled until after its registers are set up. C— E

* Wire the driver and motor as shown on page 7 of the
L293 datasheet.

* This will require the use of a diode. DC Motor

e Set up an external interrupt to be triggered by a

button. PWM

* On each press of the button, the PWM duty cycle
should increase by 25% .
* When the duty cycle is at 100%, it should next go back to 0%. | |

* Note that a duty cycle of 25% likely will not cause the motor
to turn, but you should be able to hear it attempting to do so.

ANAE6CT

Lab 9: Serial Peripheral Interface
ECE 3720

GCLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

The PIC32’s SPI module will be used to send data serially to an external shift register, which will display its value
on LEDs. Each time a button is pressed, the MC will send a new value to the shift register.

e lside_

Serial Peripheral Interface 3
SPI Module Diagram 4
Using SPI 5
SN74HC595 (shift register) 6
Lab Goals 7
Notes 8

CLEMSON

‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Serial Peripheral Interface (SPI)

Figure 23-2: Typical SP| Master-to-Slave Device Connection Diagram

e SPlis a communication protocol often used for

short-distance communication in embedded
PIC32 PROCESSOR 2
systems. [SPI Master] [Slave]
_ o _ _ SDOx —— | SDIx
* Serial communication sends data one bit at a time over
a single channel. SDIx |eg— |SDOx(@
e Master-slave architecture sckx |_SeralClock o ook
* Each can send data to the other. GPIOSSx F — — — -l S5x
* Master provides the clock and slave select signals Slave Select("

(slave select tells that particular device to listen). o
. Note 1: In Normmal mode, the usage of the Slave Select pin (35x) is optional.
* PIC32 can operate as master or slave. We'll use it in 2: Control of the SDOx pin can be disabled for Receive-Only modes.

master mode.

PIC32 FRM — Section 23. SPI, pg. 4

The terms MOSI (Master Out, Slave In) and The SPIx serial interface consists of four pins:
MISO (Master In, Slave Out) are often used - SDIx: Serial Data Input
to refer to the two data channels. - SDOx: Serial Data Output

* SCKXx: Shift Clock Input or Output
« S5x: Active-Low Slave Select or Frame Synchronization I/O Pulse

PIC32 FRM — Section 23. SPI, pg. 2 3

CLEMSON

“" HOLCOMBE DEPARTMENT OF ELECTRICAL

AND COMPUTER ENGINEERING

SPI Module Diagram

Internal
Data Bus

Write transmit data and read SPIEUF ﬁ

received data from SPIXBUF

- — - — 5 Registers share address SPIxBUF
* Data prgpagates automatically tg SPIXTXB | .
(transmit) or from SPIXRXB (receive) : :
* You will only write to SPIxXBUF | | "
S -~ ST
| | Baud Rage Generator
| | * Baud rate refers to rate of data
I I transfer (bits/s)
ST B T_ran;m: * Here, the BRG divides the clock
to achieve desired rate
Receive——
4 = SPIxSR
SDlx it 0
] :
o - = e
utput pIns > Slave Select — Eige ——MCLKSEL
« SDOx and SSx must be mapped with PPS S—% $/nc Contro o | 8
* SCKx is hard mapped to a specific pin <] |BadRate| | MeLK
PBCLK

SCKx
ﬂ Enable Master Clock PIC32 FRM — Section 23. SPI, pg. 3 4

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Using SPI

* The document Section 23 — Serial Peripheral Interface is available on Canvas in the Lab 9 module.
* Contains all the information about the PIC32’s SPI capabilities

* Follow the steps in Section 23.3.3.1 Master Mode Operation.
* This covers the majority of what you need to do in your code.
* Study pages 18-20 for a better understanding.
* See the notes at the end of these slides for details on what values you will set.

* Registers of interest

e SPIXBUF //write or read data
* SPIXCON //configure SPI module (pg. 8)
* SPIXSTAT //SPI module status (pg. 13)

* SPIBRG //divisor for baud rate generator

CLEMSON

"’“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

SN74HC595

* Datasheet available here Logic Diagram (Positive Logic)
e Study the logic diagram on page 1 &= >
* Features two registers (the columns of 8 flip-flops) RoLK 2 |I>’
— 10 -
» Shift register (left column) receives data from SER one bit at a SReLA . 1>
time. On each tick of SCLK, the newest bit is stored in the top FF, SROLK 3 D _
and previous bits are each shifted down one. SER — 1°, Py d®, L D[5o
» Storage register (right column) is connected to outputs Q,-Q,,. It ? 18 1 *
updates to match the shift register on each tick of RCLK. = _
2R —a——{3R 1
* Find the timing diagram on page 8 PR I ‘—k; %
* Notice that the outputs update on rising ed f RCLK. ——
RN iy =1 .
* Outputs go to high impedance state when OE goes high, and get A ope——fm | 2
cleared when SRCLR goes low. Neither should be left floating. . Ja R S gl &
L _
2R (L 3R 3
‘ T;r:z a—c.;sm > fg‘ Qp

SNx4HC595 datasheet, pg. 1

https://www.ti.com/lit/ds/symlink/sn74hc595.pdf

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

 Use the PIC32 in SPI master mode to send the values chipKIT Cmod
from the given array to the shift register.

Simple Diagram

Button

E
(Can use DIO instead of

button and/or LEDs)

e Connect the SN74HC595 inputs as shown in the
diagram, and its outputs to LEDs (or digital reader).

* Set up an external interrupt. Each time it’s triggered,
the next value in the array should be written to

SPIXBUF and appear on the LEDs. 8
gy [LEDs

wn
=2
~
S
xI
(@)
Ul
G}
Ul

Array of values to display:
char spiChars[18] =10, 1, 4, 8, 16, 32, 64, 128, 255, 254, 253, 251, 247, 239, 223, 191, 127};

00 0——0 —— @CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Notes

* The SPI module can transmit 8-, 16-, or 32-bit bit data. What data width will be needed for this lab, and how
is that mode selected? (see section 23.3.1)

* The following is a checklist of values to set (located in SPI1CON, unless otherwise specified)
* IEC1bits.SPIRX =0

* |EC1bits.SPITX =0 // Disable SPI interrupts

e ON=0 // Disable SPI module during setup

* SPI1BUF

* ENHBUF=0 // Don’t want enhanced buffer mode

* CKP, CKE // See figure 23-9 in Section 23 document (pg. 20)

* SPIBRG = 1000 // Should result in baud rate slow enough to observe transmission with oscilloscope
* SPIROV // In SPI1STAT

* MSTEN, MSSEN
* ON=1 // Enable SPI module after setup is complete

Lab 10: Analog to Digital Conversion
ECE 3720

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Preview

A variable, analog voltage will be produced with a force-sensitive resistor and serve as an input to the PIC32’s
ADC module. The ADC will convert the voltage into a digital value, which will be displayed in binary on the MC’s
output LEDs. Increasing the force on the FSR should cause the LEDs to count up.

e ke
Analog to Digital Conversion (ADC)
ADC Diagram
Using ADC
Force-Sensitive Resistor (FSR)

Lab Goals

0 IN o o [~ W

Notes

GCLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Analog to Digital Conversion (ADC)

e ADC is the process of reading an analog signal, which has infinite possible values, and producing a digital
representation of it using a finite number of bits.

* This is done any time an analog value (typically a voltage) must serve as an input to a computer.

Example: Suppose we had an analog input of 0-4 V and a 2-bit ADC:

Analog input value Digital representation

0-1V 00
1-2V 01
2-3V 10
3-4V 11

* Note that the precision of the digital representation depends on the number
of bits available. 2 bits gives us 4 possible values, 3 bits would allow 8, etc.
 We will be using a 10-bit ADC and a voltage range of 0 to 3.3V

CLEMSON

“" 'HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

ADC Module Diagram

wirer+1) Avoo wWrer-l1) Avss

[TI T < Reference Voltages

? * Vgery,. are external pins.
N M / * AV, and AV are the

S - VCFG<2-0> PIC32’s internal voltages
. | ANORG— | ADC1BUFO (3.3V and 0V).
Multiplexers to select = | | ADC1BUF1
: AN15— ADC1BUF2
ADC mpu’gs | e | L SHA | VREFH VReRL
* Positive input can be any | | Scan ' e .
of the analog read pins. | CHDSA<3:0> |) CHOSB<3:0> :1> SRR S SARADC F—)
* Negative input is AN1 or | CSCNA . I i | < f Sampling and Conversion
low .reference voltage. I AN o= b : ¢ Sample and hold amplifier
+ Settings for MUXA and e | ADC1BUFE (SHA) reads input and holds.
MUXB (we only use A) | _ | ADC1BUFF » Successive approx. register
| | (SAR) ADC converts to digital.
| CHONA CHONB | + Results stored in ADC buffers.
L e e e e e e e] e e e — |
Alternate

Input Selection

Note 1: YREF+ and VREF- inputs can be multiplexed with other analog inputs.

PIC32 FRM — Section 17. ADC, pg. 3

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Using ADC

* The document Section 17 — 10-Bit AD Converter is Figure 17-2: ADC Sample/Conversion Sequence
available on Canvas in the Lab 10 module.
* Contains all the information about the PIC32’s ADC capabilities

* See section 17.3.1 (pg. 12) for a more detailed explanation of ADC
module’s operation.

#4——— ADC Total Sample Time———»,

Acquisition Time Conversion Time

E Y -

Analog-to-digital conversion complete, result is written

e Follow the StepS in section 17.4 ADC Module into the ADC result buffer. Optionally generate interrupt.
Configuration.
* Sections 17.4.1-17.4.15 provide detail on each of the steps.

e See the notes at the end of these slides for details on how to set
up ADC for this particular lab.

* You will set up an ADC interrupt to trigger after every 4 samples SHA Is connected to the analog input pin for sampling.
and display their average.

SHA is disconnected from input and holds the signal.
Analog-to-digital conversion is started by the conversion trigger source.

PIC32 FRM —Section 17. ADC, pg. 12

8JCLEMSON

‘”v HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Force-Sensitive Resistor (FSR)

* Very high resistance normally.
* Resistance decreases as force is applied.

* Used to create a variable, analog voltage.

chipkIT Cmod

3.3V FSR

RO -

Pull-Daovein

CLEMSON

HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Lab Goals

* Wire the FSR to supply a variable, analog voltage (O-
3.3V) to an analog-read-capable pin.

Simple Diagram

e Set up the PIC32’s ADC module to sample and
convert the voltages (section 17.4).

* Set up the ADC interrupt: FSR

* Should trigger after every 4 samples.
* Average the 4 converted values (first 4 ADCBUFs).
* Output the 8 most significant bits (10-bit ADC, so >> 2).

7> [LEDs

* Display the converted value on 8 LEDs or with digital
reader.

O O O O O O O O ‘“ HOLCOMBE DEPARTMENT OF ELECTRICAL
AND COMPUTER ENGINEERING

Notes

* Make sure to follow all 15 steps of section 17.4 (step 13 should appear last in the code).
* We don’t have AD1PCFG; use ANSELXx instead.

* Only use MUXA.

* The ADC module can be set up to alternate between two inputs, which use MUXA and MUXB to select their ADC inputs, respectively.
Since we are only using one input, we only need MUXA.

* Make sure sampling and conversion trigger automatically.

* Take 4 samples before each interrupt.
* It’s common to average multiple samples with an ADC, in order to ensure the result accurately reflects the input.

* Use 12 for your acquisition time (step 11) |

e Use 6 for your prescaler (step 12
y P (P) Conversion time is the time required for the ADC to convert the voltage held by the SHA. The

ADC requires one ADC clock cycle (TAD) to convert each bit of the result, plus two additional
clock cycles. Therefore, a total of 12 TAD cycles are required to perform the complete conversion.
When the conversion time is complete, the result is written into one of the 16 ADC result registers
(ADC1BUFO through ADC1BUFF).

PIC32 FRM — Section 17. ADC, pg. 12

	Lab1-Intro.pdf
	Lab2-DigitalLatch.pdf
	Lab3-Comparators_compressed.pdf
	Lab5-Interrupts_compressed.pdf
	Lab6-PPS_compressed.pdf
	Lab7-Timers_compressed.pdf
	Lab8-PWM_compressed.pdf
	Lab9-SPI_compressed.pdf
	Lab10-ADC_compressed.pdf

