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ABSTRACT 
 
 

The issue of climate change has led to an increased emphasis on sustainable 

practices in almost every facet of our lives.  For water utilities, this has increased scrutiny 

on energy use.  Although traditionally viewed solely in financial terms, energy use is also 

the primary source of greenhouse gas (GHG) emissions from water utilities.  The 

emerging concern over GHG emissions coincides with potential federal legislation and 

regulation by the Environmental Protection Agency (EPA).  In order for water utilities to 

determine their GHG emissions, guides and tools must be made readily available.  

Information to educate water utilities about their GHG emissions is often scattered and 

calculation tools are not publically available for utilities in the United States. 

The main objective of this research was to develop an accounting tool to facilitate 

water utilities in calculating their GHG emissions.  This tool will allow a water utility to 

create a GHG emissions baseline and assist in meeting any emissions reduction goals.  

More specifically, this research project focused on four sub-objectives: (i) to create an 

Excel-based program to serve as the shell of the GHG emissions accounting tool, (ii) to 

develop energy prediction equations for different portions of the water production 

process, (iii) to include the water-energy nexus in the accounting tool, and (iv) to test the 

program using real data at various water utilities. 

A thorough literature review was conducted to determine all available data and 

equations that pertained to the GHG emissions of water utilities.  This information was 

used to create a GHG emissions accounting tool that was designed to be flexible enough 

for use by a wide range of utility sizes, treatment processes, and locations in the United 
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States.  Energy prediction equations were developed for the raw water collection and 

finished water distribution phases of a water utility.  A prediction equation for the 

treatment processes was not able to be developed with the current data set; therefore, 

literature data were utilized for energy prediction purposes in that phase.  These 

prediction tools as well as a water-energy nexus evaluation were included in the program.  

The survey data obtained to form energy prediction equations had an average energy use 

of 3.1 kWh/1000 gallons.   

The GHG emissions accounting tool was tested at seven water utilities in Georgia, 

North Carolina, and South Carolina.  The average carbon inventory of the seven utilities 

was 1240 kg carbon dioxide equivalents (CO2-eq.)/MG.  Two of the utilities tested 

exceeded the EPA reporting rule threshold of 25,000 metric tons of CO2-eq./yr.  

Assuming an average carbon inventory of 1240 kg CO2-eq./MG, water utilities with a 

flow rate higher than 55.2 MGD would also exceed the reporting rule limit.  These values 

vary greatly when utilizing different electrical grids.  When using the highest and lowest 

GHG emitting EPA subregions, the seven utilities tested had an average carbon inventory 

ranging from 550 to 2190 kg CO2-eq./MG.  The flow rate required to exceed the EPA 

reporting rule threshold ranged from 31.3 to 123.5 MGD when using the previously 

stated carbon inventory averages.  The main source of the GHG emissions within a utility 

is pumping because the raw water collection and finished water distribution phases can 

account for 75% of the carbon inventory.  The carbon footprints of the seven utilities 

compared favorably to literature data.  The main source for the carbon footprints of all 

seven utilities were Scope 2 (electricity-based) emissions, which accounted for at least 
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80% of the total emissions.  The water-energy nexus evaluation showed that the water 

consumed in generating electricity for all seven water utilities was less than one percent 

of the total average production from each utility. 
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CHAPTER ONE 
 

INTRODUCTION AND OBJECTIVES 
 
 

The recent increased strain on potable water sources, as well as concern over 

environmental issues such as climate change, has led to an increased emphasis on 

sustainable practices (Vince, et al., 2008).  These sustainable practices include areas such 

as energy use, which is of great concern in the water industry.  In the United States, the 

water and wastewater industry uses 4% of the total electricity produced domestically 

(Goldstein & Smith, 2002).  This amount makes the water and wastewater industry the 

third highest electricity consuming industry, behind the primary metal and chemical 

industries.  At the level of an individual water utility, energy costs are second only to 

personnel in operation and maintenance budgets (Biehl & Inman, 2010).  The amount of 

energy required to produce potable water is expected to increase due to degrading source 

water quality and increasingly strict regulations, both of which require more energy 

intensive treatment techniques (Goldstein & Smith, 2002). 

The high costs associated with energy use have prompted studies among state and 

national organizations.  The Energy Center of Wisconsin (Elliot, et al., 2003), California 

Energy Commission (Klein, et al., 2005), and New York State Energy Research and 

Development Authority (NYSERDA) (Malcolm Pirnie, 2008) have all investigated the 

energy use of water utilities in their respective states.  These projects all aimed to present 

the average amount of energy used at water utilities of different sizes or source water 

types.  An additional goal of each project was to review and report various ways to 

improve the energy efficiency of the water production process.  In addition to state 
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studies, national organizations such as the Electric Power Research Institute (EPRI) and 

the American Water Works Association Research Foundation (AwwaRF) have analyzed 

energy use at water utilities.  The project by the EPRI (Goldstein & Smith, 2002) 

evaluated the electrical requirements of the water industry and also forecast the ability of 

the electrical generation sector to meet the growing needs of the industry.  The project 

sponsored by the AwwaRF (Carlson & Walburger, 2007) had a similar goal as the state-

related projects in evaluating the energy use of water utilities.  The project also went into 

greater detail by producing energy benchmarking equations that water utilities could use 

to compare their energy use with those of their peers.   

The energy use is not only a leading cost for a utility, but also the highest source 

of environmental impact over the life cycle of a utility (Vince, et al., 2008).  Life cycle 

assessment (LCA) studies have arrived at three conclusions about the environmental 

impact of water production: 

1. The operational phase of a water utility’s life cycle is the overwhelmingly 

leading contributor (often > 90%) to environmental impact, while the 

construction and decommissioning phases can be neglected even in relatively 

extreme conditions of large infrastructure requirements (Raluy et al., 2005b). 

2. Within the operational phase, energy use and more specifically, the production 

of electricity, is the greatest source of environmental impact (Vince, et al., 

2008). 

3. After energy use, the chemicals used during treatment represent the second 

largest source of environmental impact (Vince, et al., 2008). 
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While reducing energy use has traditionally been motivated by financial reasons, 

now it also ties into the growing environmental concern of climate change and 

greenhouse gas (GHG) emissions.  The electricity required by water and wastewater 

utilities that uses 4% of the national electricity generation produces 31 million metric 

tons of carbon dioxide equivalents (CO2-eq.) (Biehl & Inman, 2010).  The GHG 

emissions from water utilities have an even greater impact on individual cities; as water 

production accounted for 31% of the total emissions from governmental operations in a 

study of 2006 data from Columbia, SC (Brennan, 2011).  The relevance of GHG 

emissions is likely to increase as federal legislation in enacted such as the American 

Clean Energy and Securities Act (ACES) (American Clean Energy and Security Act of 

2009, 2009).  The ACES, also known as the Waxman-Markey Bill, passed the House of 

Representatives in 2009 and contained sections forming a cap and trade system for 

carbon emissions.  The bill was never voted on by the Senate and because the session of 

Congress in which it was introduced has ended; the bill must be reintroduced to a new 

session of Congress (H.R. 2454 - 111th Congress: American Clean Energy and Security 

Act of 2009, 2009).  The United States Environmental Protection Agency (EPA) has 

recently begun a process of GHG regulation by passing a reporting rule.  The rule 

requires annual GHG emission reporting by entities that emit greater than 25,000 metric 

tons of CO2-eq. per year (Hoffman, 2010).  This rule includes industries such as power 

production, petroleum refineries, chemical production, and solid waste landfills but 

currently omits water utilities.   
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Some water utilities have an interest in reducing GHG emissions and the effects 

of climate change that are not regulatory based.  Climate change can have a drastic 

impact on the water utility’s source waters.  For example, the Western United States are 

already seeing a 10% decrease in water runoff from snowmelt between April and July, 

which translates to less water to fill reservoirs (Wallis, et al., 2008).   Climate change is 

also leading to sea level rise along with longer and more frequent heat waves (Wallis, et 

al., 2008).  Overall, climate change is decreasing both the quantity and quality of source 

waters available to water utilities while increasing the demand for potable water that 

comes with increasing temperature (Wallis, et al., 2008). 

In order for a water utility to evaluate its GHG emissions, proper guides and tools 

must be made available.  While guides are available to assist water utilities in 

determining their GHG emissions, the information is often scattered and has not been 

compiled and made readily available to water utilities in a simple and user friendly way.  

In addition, GHG accounting tools are mostly developed for general use or are geared 

toward a specific industry, such as chemical production.  One commercial tool designed 

specifically for water utilities was created by the United Kingdom Water Industry 

Research (UKWIR).  This tool is designed for water utilities in the United Kingdom and 

its newest version costs about $400 (UKWIR, 2010).  Other tools may have been 

developed by consulting companies or large utilities but are not commercially or 

publically available. 

An additional topic being raised in the discussion of climate change and 

sustainable practices is the water-energy nexus.  The water-energy nexus involves the 
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concept that energy is required to produce water, yet at the same time water is required to 

produce energy (Glassman, et al., 2011).  This concept becomes increasingly important 

when analyzing electricity production methods, in that GHG emissions as well as the 

water consumed in generating the electricity need to be taken into account. 

The main objective of this thesis project was to develop an accounting tool that 

will allow water utilities to calculate their GHG emissions.  Using this tool, utilities will 

be able to assess their carbon inventory and footprint and their impact on climate change.  

It will facilitate the creation of an emissions baseline and assist in meeting any emissions 

reduction goals.  The tool will also become beneficial should a mandated GHG emissions 

reporting rule or reduction program apply to water utilities.  To accomplish the main 

objective, this research project focused on the following four sub-objectives: 

The first sub-objective was to create an Excel-based program to serve as the 

shell of the GHG accounting tool.  Prior to developing the program, a comprehensive 

literature review was conducted to compile all available data, equations, and other useful 

information related to the GHG emissions of water utilities.  For the program itself, Excel 

was chosen because it is a common, widely used tool that can be used by people with a 

wide range of computer experience.  The Excel program contains all the necessary data 

entry locations along with the formulas and data needed to determine the GHG emissions.   

The second sub-objective was to develop energy prediction equations for 

different portions of the water production process.  Energy use has been shown to be the 

major contributor to GHG emissions for water production, so it was important to provide 

a way to determine that information if not know to the water utility.  Energy use 
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predictions were to be developed for three portions of water production: (i) raw water 

collection, (ii) treatment, and (iii) finished water distribution.  To construct these 

equations, data on energy use and system characteristics were obtained using surveys 

conducted by others as well as the author of this thesis. 

The third sub-objective was to include the water-energy nexus in the GHG 

accounting tool.  The amount of electricity used at a given utility was used to determine 

the amount of water consumed in producing that electricity.  That water consumption was 

then utilized to determine a net water production value for the utility. 

The fourth sub-objective was to test the program using real data at various 

water utilities.  This process served two functions.  The first was to gather an idea of the 

scale of GHG emissions associated with a variety of water utilities.  The second function 

was to obtain feedback about the program from its intended users. 
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CHAPTER TWO 

LITERATURE REVIEW 

 In this chapter, the energy use investigations made on a national and statewide 

scale will be discussed, especially as they pertain to predicting energy use throughout 

water production.  In addition, the environmental impact from water treatment as 

evaluated by life cycle assessments (LCAs) will be discussed.  The topic of GHG 

emissions will also be introduced and will include what they are, how they are measured, 

the concept of GHG accounting, the current tools available to perform the accounting, 

and GHG regulations.  The issues stemming from the water-energy nexus will also be 

discussed.  The chapter will conclude with a summary of findings. 

2.1 Energy Use Investigations 

 Because energy use is the dominant source of environmental impact as well as a 

major financial driver, a number of state agencies have investigated energy use involved 

in water production.  Most projects have had the goals of quantifying the energy used 

during water production and reviewing energy savings measures in order to decrease 

costs. 

 One such investigation was organized by the Energy Center of Wisconsin (Elliott, 

et al., 2003) in order to quantify the energy used at the state’s drinking water facilities.  

The study evaluated Wisconsin’s drinking water facilities from 1997 to 2000 and 

determined that the statewide average energy use was 1.6 kWh per 1000 gallons of water 

produced.  The results of the study illustrated that economies of scale applied to energy 
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use as the largest facilities used the least amount of energy per 1000 gallons (see Table 

2.1).  The study also determined differences in energy use between groundwater and 

surface water sources, with groundwater sources requiring 1.3% more energy per gallon.  

Another topic of investigation was the effect of implementing new technologies.  These 

results are presented in Table 2.2.   

Table 2.1 Median energy use values for drinking water facilities in Wisconsin 
[adapted from (Elliott, et al., 2003)]. 

Utility Class Number of Customers
Median Energy Use 

(kWh/1000 gal) 
AB > 4,000 1.51 
C 1,000 – 4,000 1.85 
D < 1,000 1.89 

 

Table 2.2 Energy increases due to new technology implementation [adapted from 
(Elliott, et al., 2003)]. 

Treatment Process 
Energy Addition 

(kWh/1000 gallons) 
Ozone Disinfection 0.12 – 0.55 
UV (low-pressure) 0.0032 – 0.0048 

UV (medium-pressure) 0.0068 
Microfiltration 0.0 – 0.7 
Ultrafiltration Not Enough Data 

 

 The background research performed for the study on drinking water facilities in 

Wisconsin (Elliott, et al., 2003) located data detailing the energy requirements of specific 

steps in the water production process.  The data pertaining to surface water plants can be 

seen in Table 2.3 while companion data for groundwater plants are presented in Table 

2.4.  An attempt was made to obtain a copy of the report, published by the EPRI, 
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containing the original data, but was unsuccessful.  The data are reported to be from the 

1970s and thus caution is urged when using.  The totals given represent the energy 

requirements of an entire water production process.  If the values are converted from 

units of kWh/day to kWh/1000 gallons, a comparison can be made between these 

literature values and the data obtained in the study of Wisconsin drinking water facilities.  

Those converted values can be seen in Table 2.5.  The literature values do not illustrate as 

dramatic of an effect of economies of scale as the results of the study indicate, especially 

with groundwater plants which remain constant from 1 MGD to 20 MGD.  The values do 

compare favorably to the average values shown in Table 2.1. 

Table 2.3 Energy requirements (kWh/day) for process steps in surface water 
treatment (Elliott, et al., 2003). 

Treatment Plant Production 
Process Step 1 MGD 5 MGD 10 MGD 20 MGD 50 MGD 100 MGD 

Raw Water Pumping 121 602 1205 2410 6027 12055 
Rapid Mixing 41 176 308 616 1540 3080 
Flocculation 10 51 90 181 452 904 
Sedimentation 14 44 88 175 438 876 
Alum Feed System 9 10 10 20 40 80 
Polymer Feed System 47 47 47 47 47 47 
Lime Feed System 9 11 12 13 15 16 
Filter Surface Wash 
Pumps 

8 40 77 153 383 767 

Backwash Water 
Pumps 

13 62 123 246 657 1288 

Treated Water 
Pumping 

1205 6027 12055 24110 60273 120548 

Chlorination 2 2 2 2 4 8 
Residuals Pumping 4 20 40 80 200 400 
Thickened Solids 
Pumping 

N/A N/A N/A 123 308 616 

Total 1483 7092 14057 28176 70384 140685 
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Table 2.4 Energy requirements (kWh/day) for process steps in groundwater 
treatment (Elliott, et al., 2003). 

Treatment Plant Production 
Process Step 1 MGD 5 MGD 10 MGD 20 MGD 

Well Pumping 605 3025 6050 12100 
Chlorination 9 45 93 186 
Booster Pumping 1210 6050 12100 24200 
Total 1824 9120 18243 36486 

 

Table 2.5 Energy requirements (kWh/1000 gal) for the entire water production 
process [adapted from (Elliott, et al., 2003)]. 

Treatment Plant Production 
Water Source 1 MGD 5 MGD 10 MGD 20 MGD 50 MGD 100 MGD 

Surface Water 1.48 1.42 1.41 1.41 1.41 1.41 

Groundwater 1.82 1.82 1.82 1.82 N/A N/A 
 

 Another project undertaken to evaluate energy use in water production was 

carried out by the California Energy Commission (Klein, et al., 2005).  The project was 

developed to study the relationship between energy production and water and wastewater 

utilities in California as well as identify solutions to the water and energy problems of the 

state.  The report provides overall energy intensity ranges for the three main phases of 

water production (Table 2.6).  The large range of values can be attributed to the unique 

combination of resource and population locations found in California.  Northern 

California is home to only one-third of the population of the state, yet it receives two-

thirds of its precipitation.  This situation causes Southern California to import about half 

of its raw water from significant distances, such as the Colorado River.  To gain a better 
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perspective on the differing amounts of energy required to produce water in the state, 

Table 2.7 illustrates the differences between the energy use for water production in 

Northern and Southern California.  The total energy required for water production in 

Northern California, 1.45 kWh/1000 gal, is similar to values seen in the Wisconsin study 

(Elliott, et al., 2003).  However, the result of having to pump raw water from increased 

distances is evident in Southern California, having an energy intensity seven times 

greater than the northern portion of the state. 

Table 2.6 Energy use ranges for water production in California [adapted from 
(Klein, et al., 2005)]. 

Energy Use (kWh/1000 gal) 
Process Step Low High 

Water Supply and Conveyance 0 14 
Water Treatment 0.1 16 

Water Distribution 0.7 1.2 
Total 0.8 31 

 

Table 2.7 Energy use for typical urban water systems in Northern and Southern 
California [adapted from (Klein, et al., 2005)]. 

Energy Use (kWh/1000 gal) 
Process Step Northern California Southern California 

Water Supply and 
Conveyance 0.15 8.9 

Water Treatment 0.1 0.1 
Water Distribution 1.2 1.2 

Total 1.45 10.2 
 

 Another state interested in evaluating its energy use for water production was 

New York.  The New York State Energy Research and Development Authority 
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(NYSERDA) published a report detailing the findings of the study (Malcolm Pirnie, 

2008).  The study was initiated to examine the possible increases in energy efficiency in 

the water and wastewater industry in the state.  To achieve that goal, an energy baseline 

was to be evaluated, thus determining average energy use values for water production.  

The report states that the national average for water production is 1.4 kWh/1000 gal, 

which corresponds well to values found previously.  The energy requirements for water 

production in New York are shown in Table 2.8.  The large population and ability to treat 

without filtration allows some New York City water treatment plants to use relatively low 

energy intensities.  This is especially evident when comparing the statewide average 

energy use with and without the New York City systems.  Even when omitting the low 

energy intensity New York City systems, the New York state water systems are able to 

produce water at lower energy intensities than the national average.  The report states that 

the reasons for this lower energy use are water sources close to major populations, large 

quantities of easily treatable surface waters, and fairly shallow groundwater sources.  The 

data also illustrate that economies of scale apply to the water systems in New York, with 

the larger systems using less energy per volume of water produced. 
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Table 2.8 Energy use for New York water systems serving various population sizes 
[adapted from (Malcolm Pirnie, 2008)]. 

Population Served Energy Use with New York City 
(kWh/1000 gal) 

Energy Use without New York City 
(kWh/1000 gal) 

Statewide Average 0.705 0.890 
< 3,300 1.080 1.080 

3,300 – 50,000 0.980 0.980 
50,000 – 100,000 0.810 0.810 

> 100,000 0.600 0.640 
 

 The New York report (Malcolm Pirnie, 2008) also investigated the energy 

required to produce water from different sources (Figure 2.1).  The figure helps to 

illustrate the economies of scale effect for surface water and purchased water sources.  

However, water production utilizing groundwater does not appear to follow the 

economies of scale effect in New York.  While the cause of this trend is not presented, it 

may be because increasing groundwater flows often requires new wells, and therefore 

completely new pumps; while to increase flow from a surface water source, only a larger 

pump is required.  For purchased water sources the water is provided at pressure already 

by the seller, so increasing flow would involve a larger pump to send the influent water to 

the beginning of the treatment process.  The report closes by discussing factors that may 

affect energy use in the future.  Increasingly strict regulations which correspond to more 

energy intensive treatment techniques (ozone, ultraviolet (UV) disinfection, and 

membrane filtration) are pointed out as the most likely cause of increased energy use. 
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Figure 2.1 Evaluation of energy requirements for different source waters among 
various sizes of New York water systems (adapted from  (Malcolm Pirnie, 2008)). 
 

 In addition to state investigations, national organizations have also conducted 

studies on energy use in drinking water production.  The Water Research Foundation 

sponsored and published a report (Veerapaneni, et al., 2011) to examine the energy use at 

desalination facilities.  Due to the dwindling supply of fresh water sources and the 

increasing demand for potable water, desalination is seen as an opportunity to provide 

previously untapped sources of water.  While the process is energy intensive, the 

worldwide water production capacity using desalination technologies was estimated to be 

15,000 million gallons per day (MGD) in 2010.  The goal of the study was to evaluate the 

energy use of different desalination technologies and to recommend ways to improve the 

energy efficiency at desalination plants.  The study achieved its goal through surveys and 
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site visits to desalination facilities.  The main desalination processes evaluated were 

reverse osmosis (RO), multiple effect distillation, and multi-stage flash.  RO has become 

the more desired process in the past decade, with 55% of new seawater desalination 

plants utilizing this technology (Veerapaneni, et al., 2011).  Membrane processes are used 

exclusively when treating brackish water and wastewater sources, most likely because 

energy use decreases with decreasing salinity of the source water, while the energy use of 

a thermal process (multiple effect distillation and multi-stage flash) remains constant. 

 The study was able to compile overall averages for energy use at desalination 

plants around the world.  The advantage in energy use for RO processes over thermal 

processes was evident.  Thermal processes average between 20 and 45 kWh/1000 gallons 

while RO processes treating seawater average 12 to 17 kWh/1000 gallons.  The report 

also details the energy use for “large seawater desalination facilities” as ranging from 16 

to 24 kWh/1000 gallons, while those built in the last five years range from 14 to 16.5 

kWh/1000 gallons (Veerapaneni, et al., 2011).  The reasons are unclear for the 

differences in the stated RO energy use values.  One would assume that larger plants 

would use less energy because of economies of scale effects, but that does not seem to be 

the case.  The energy used in the different steps in the RO treatment process was 

determined in the study as well and is located in Table 2.9.  The energy consumed in the 

RO treatment step, both first and second pass, accounts for the vast majority of the 

energy required to produce potable water and ranges from 60-86%.  In absolute numbers, 

the first pass uses 9 to 11.5 kWh/1000 gallons while the second pass uses 1 to 2 

kWh/1000 gallons (Veerapaneni, et al., 2011).  The high amounts of energy required for 
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RO are illustrated with these numbers as the second pass of the RO process alone 

requires about as much energy as is consumed in the entire water production process at a 

conventional water treatment plant in Wisconsin (Elliott, et al., 2003) and New York 

(Malcolm Pirnie, 2008). 

Table 2.9 The relative amount of energy used by the various steps in the 
desalination process [adapted from (Veerapaneni, et al., 2011)]. 

Treatment Phase Percentage of Total Energy Use 
Raw Water Collection 5-10% 

Pretreatment 5% 
1st Pass RO 50-66% 
2nd Pass RO 10-20% 

Finished Water Distribution 5-10% 
 

 The desalination report (Veerapaneni, et al., 2011) also investigated the energy 

required for treatment of brackish waters and wastewater.  The energy required at these 

facilities ranges from 1 to 8.6 kWh/1000 gallons.  The salinity of the source water has a 

significant impact on the energy required for treatment with 1.5 to 3.5 kWh/1000 gallons 

needed for source water salinity ranging from 1000 to 2000 mg/L.   

The report (Veerapaneni, et al., 2011) also included an energy use comparison 

between various individual water treatment steps, which can be seen in Figure 2.2.  The 

plot illustrates the increased energy intensity of advanced technologies, such as RO, 

versus traditional techniques such as rapid mixing, flocculation, and sedimentation.   
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Figure 2.2 Energy requirements of various steps in the water treatment process 
(Veerapaneni, et al., 2011). 
 

 The reports on energy use for water production reviewed so far have focused on 

presenting overall averages, stated as kWh/1000 gallons for the entire water production 

process, along with suggestions for energy efficiency improvements.  While overall 

averages are helpful in presenting an order of magnitude range of energy use, they 

provide little assistance in predicting the energy use at a specific water utility.  The 

reports studying energy use in Wisconsin water treatment facilities (Elliott, et al., 2003) 

and in desalination facilities (Veerapaneni, et al., 2011) provide greater details for the 

energy required during water treatment but few details are presented for the raw water 

collection and finished water distribution portions of water production.  A project 

sponsored by the AwwaRF (Carlson & Walburger, 2007) provides the most detailed 

evaluation of energy use at water utilities to date.  The stated goal of the project was to 
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develop tools to allow for comparison of energy use among peers in the water and 

wastewater treatment industries. 

 The first step for the AwwaRF project (Carlson & Walburger, 2007) was to 

conduct a mail survey to assess the characteristics and energy use of various water 

utilities.  A similar project being undertaken by the NYSERDA (Malcolm Pirnie, 2008) 

was discovered by the AwwaRF report team, and in order to prevent multiple surveys 

from being mailed to utilities in New York, a joint survey was constructed.  This action 

resulted in a slight duplication of the two reports and a disproportional amount of data 

from New York utilities.  Overall, the project mailed surveys designed to obtain a 

detailed summary of the water production process along with energy usage to 1,723 

utilities.  Responses were received from 217 utilities, providing a 13% response rate.  The 

report provides a number of figures depicting the distributions based on energy cost, 

energy use, daily flow, etc. 

 The report (Carlson & Walburger, 2007) then discusses the development of a 

water metric to be used to compare water utilities to their peers.  The metric was to 

predict energy use for the entire water utility from a set of system parameters.  The first 

step was to remove utilities with electricity uses less than 2,000 kWh and greater than 

5,000 kWh/MG; these steps eliminated eight utilities.  When contemplating the type of 

model to use, a logarithmic transformation of the data was selected due to the large range 

of the data set.  It is unclear whether another transformation, such as a square root, was 

investigated to account for the large range or if a logarithmic transformation was the only 

one considered.  The metric was then built by using the natural log of energy use as the 
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dependent variable.  First, a simple model consisting of the natural log of the daily 

average flow as the independent variable was shown to illustrate a linear relationship 

with the natural log of energy use.  From that basic model, the metric was expanded in a 

stepwise manner.  Each survey parameter was then evaluated one by one to determine 

which had the greatest significance, as gauged by a t-test, when added to the model.  The 

parameter with the highest significance was then added to the model.  This process was 

repeated until the entire model was formed.  During the model formation, variables were 

only considered for the next iteration if they had a t-test value greater than 2 in the 

previous step.  The final model for predicting the total energy use for water production 

was as follows: 

ݑݐܤሾ݇	݁ݏܷ	ݕ݃ݎ݁݊ܧሺܰܮ ⁄ݎݕ ሿሻ
ൌ 8.2394  0.4993 ∗ ሿሻܦܩሾ݇	ݓ݈ܨ	݉݁ݐݏݕܵ	݈ܽݐሺܶܰܮ െ 0.0630
∗ ሿܦܩሾ݇ݓ݈ܨ	ݎ݁ݐܹܽ	݀݁ݏ݄ܽܿݎݑሺܲܰܮ  1ሻ  0.3724
∗ ሻݎ݁ݓ݁ݏݎܪ	݃݊݅݉ݑܲ	݈ܽݐሺܶܰܮ  0.0620																																									ሺ1ሻ
∗ ݎ݁ݓ݁ݏݎܪ	݃݊݅݉ݑܲ	݊݅ݐܿݑ݀ݎሺܲܰܮ  1ሻ  0.2385
∗ ሿሻݏሾ݈݄݉݅݁ݐ݃݊݁ܮ	݊݅ܽܯ	݊݅ݐݑܾ݅ݎݐݏ݅ܦሺܰܮ  0.0991
∗  ሿሻݐሾ݂݄݁݃݊ܽܥ	݊݅ݐܽݒ݈݁ܧ	݉݁ݐݏݕܵ	݊݅ݐݑܾ݅ݎݐݏ݅ܦሺܰܮ

This model has an R2 value of 0.878 and plots of the residuals illustrate that they are 

randomly distributed.  The model is designed to calculate the average energy use of a 

water utility with the given characteristics.  A comparison between the energy use of a 

given utility and those of its peers is accomplished by comparing the actual energy use of 

the water utility with the value predicted using the model.  If the amount of energy used 

is lower than the amount predicted by the model, the water utility uses less energy than 

its average peer.  To gauge how much better or worse a utility is performing versus its 

peers, a scoring system was created based on an energy use distribution curve.  This 
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system gauges the energy use of a water utility based on a percentile system, thus 

providing a 1 to 100 grade, with 100 being the best performer in terms of energy use.  

The report also presented a ten parameter model that excluded pumping horsepower (hp); 

however, this model seemed to be less accurate than the six parameter model despite the 

additional variables. 

The arguments presented in a paper by Flom and Cassell (2009) illustrate that the 

steps taken in the model selection process in the AwwaRF study may have led to a false 

confidence about the accuracy of the model.  While no rationale was presented in the 

AwwaRF report (Carlson & Walburger, 2007) to explain the choice of selection method, 

the energy prediction model was created using a specific type of a stepwise selection 

technique called forward selection.  In this method, no variables are set in the beginning 

of the process.  Variables are then added one at a time by means of whichever variable 

has the greatest value of a given significance test.  The model is complete when none of 

the remaining variables meet the given significance threshold.  This type of model 

formation process, along with other stepwise techniques, results in a number of errors 

that are problematic to identify and correct.  Some of these include high R2 values, low 

error values, low p values; the estimates of the independent variable parameters are high 

in absolute value, and the models formed are often too complicated.  The errors in the 

forward selection process all lead the user to overestimate the accuracy of the model.  

Instead of using a stepwise selection technique, other options are available and could be 

used such as the shrinking method called lasso, which was selected for this study and to 

be discussed later. 
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 The AwwaRF-sponsored study (Carlson & Walburger, 2007) also discussed the 

energy use in the different sections of water production.  Energy use prediction equations 

were developed for the raw water collection (called production in the report), treatment, 

and distribution portions of a utility and were formed in an identical way as the overall 

energy use equation.  While the method used to determine the prediction equations may 

not be ideal, the identifying factors chosen for each equation can be helpful in building 

future models.  For the raw water collection phase, the significant variables were 

determined to be total flow rate, raw water collection pumping horsepower, and 

purchased flow rate.  The equation describing water treatment utilizes total flow rate, 

purchased water flow rate, raw water collection pumping horsepower along with the 

treatment steps of oxidation, direct filtration, sand drying bed, iron removal, and 

ozonation.  For the distribution phase, the selected variables include total flow rate, 

distribution pumping horsepower, elevation change, and the presence of lagoon 

dewatering, pressure filtration, and gravity thickening.  It is unclear why processes in the 

treatment phase were included in the model for distribution energy use. 

2.2 Life Cycle Assessment Studies on Water Treatment 

One tool that has been developed to assist in evaluating the environmental impact, 

and therefore the sustainable nature, of various processes is life cycle assessment (LCA).  

An LCA involves what is commonly referred to as a cradle-to-grave approach where the 

entire life cycle of a process is taken into account including all the inputs and outputs of 

the process.  A more detailed description of the tool and the steps required to perform 

such an analysis can be found in the International Organization for Standardization (ISO) 
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14040 document, as well as its companion files (International Organization for 

Standardization, 2000, 2002, 2003, 2006a, 2006b). 

LCA is utilized by Friedrich (2002) to compare two different methods of water 

production, a conventional treatment system and a membrane filtration system.  The 

assessment showed that the operational phase of water production is dominant in terms of 

environmental impact over the construction and decommissioning phases.  The 

operational phase of both treatment techniques consumes 96-99% of the mass and energy 

used over the life cycle of the production facilities.  Within the operational phase, the 

generation of electricity needed to power the water production is the main source of the 

environmental impact. 

Another example of LCA involves a two part study, first comparing the 

environmental impact of three different desalination techniques (Raluy et al., 2005a), and 

second comparing those results to a river water transfer project (Raluy et al., 2005b).  The 

first study investigates the environmental impact of RO, multi effect desalination, and 

multi stage flash.  This analysis confirmed the results of the previous study that the 

operational phase accounts for the majority of the environmental impacts for each of the 

desalination technologies.  While one environmental impact assessment method resulted 

in the operational phase accounting for 88.6% of the environmental impacts, the other 

methods fell in the 96-99% range.  The impacts of the final disposal phase were found to 

be negligible, making the remaining portion due to the construction phase (Raluy et al., 

2005a).  The second part of the study compared the process from part 1 that had the 

lowest environmental impact, RO, with the Ebro River Water Transfer (ERWT) project.  
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This project involves a 900 km long system of mostly open water conduits and is an 

example of an extreme case with a large infrastructure in place.  The LCA of the ERWT 

resulted in the operational phase accounting for an average of 85% of the environmental 

impact if the lifespan of the ERWT was assumed to be 50 years.  However, if the lifespan 

of the ERWT was assumed to be 25 years, the operational phase would account for 75% 

with the construction phase accounting for 25% (Raluy et al., 2005b).  This study 

illustrates that even when dealing with an extreme example, a substantial infrastructure 

with a short lifespan, the operational phase still dominates the environmental impact of 

water production. 

Stokes and Horvath (2006) and Lyons et al. (2009) utilized LCA to compare the 

environmental impact from three different water supply methods: importation, 

reclamation/recycling, and desalination.  Stokes and Horvath (2006) found that 

desalination caused the greatest impact because it also required the highest energy use, 

thus illustrating that energy use is the most important factor in environmental impacts 

from water production.  Lyons et al. (2009) determined similar results in that desalination 

had the greatest impact due to its high energy use.  The study also confirmed that the 

operational phase is responsible for the majority of the environmental impacts, even 

when the infrastructure life span was reduced from 50 to 10 years.  Due to the high 

importance of energy use, Lyons et al. (2009) investigated how the environmental 

impacts would change when using energy grids made up of different electrical production 

methods.  Three energy grids were chosen for evaluation: United States (predominantly 

fossil fuels), France (predominantly nuclear), and Norway (predominantly hydroelectric).  
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Order of magnitude changes in environmental impacts were illustrated when changing 

from the United States grid to the France grid and then onto the Norway grid.  This 

exercise helps to demonstrate the importance of using an accurate energy grid when 

evaluating environmental impact.  The data also show that changing the electrical 

generation methods to more sustainable options can provide large decreases in 

environmental impacts.   

Vince et al. (2008) evaluated multiple water treatment processes and also 

determined that energy use was the primary cause of environmental impacts.  The study 

established that the second highest cause of environmental impacts was from production 

of the chemicals used in the treatment process.  Vince et al. (2008) concluded that the 

high energy requirements of water production, especially for the raw and finished water 

pumping, result in energy use being a significant gauge of environmental impact. 

2.3 Importance of the Electrical Grid 

 The electrical grid which a water utility is using becomes critical when evaluating 

the GHG emissions of that utility.  This was demonstrated by Lyons et al. (2009) and is 

also illustrated in Figure 2.3.  There exists a clear separation between the traditional 

thermal processes (coal, gas, and oil) and nuclear and the renewable sources 

(hydroelectric, biomass, wind, and solar).  A water utility that is able to draw power from 

an electrical grid using more renewable sources will automatically be responsible for less 

GHG emissions than a comparable utility using a grid composed of more thermal 

processes. 
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Figure 2.3 Average life cycle GHG emissions from various electricity production 
methods (data sources can be seen in Appendix A). 
 

2.4 Greenhouse Gases 

A GHG is a compound that absorbs thermal radiation, thus trapping heat on the 

surface of the Earth and causing a greenhouse effect (IPCC, 2007).  When reporting GHG 

emissions, there are six gases or categories of gases that are considered.  These six were 

recognized by the United Nations Framework Convention on Climate Change 

(UNFCCC) in the Kyoto Protocol (Huxley, Bellamy, Sathyanarayan, Ridens, & Mack, 

2009). 

1. Carbon Dioxide (CO2) 
2. Methane (CH4) 
3. Nitrous Oxide (N2O) 

0

200

400

600

800

1000

1200
A

ve
ra

ge
 E

m
is

si
on

s 
(g

 C
O

2-
eq

./k
W

h
)

Electricity Production Method



 41

4. Hydrofluorocarbons (HFCs) 
5. Perfluorocarbons (PFCs) 
6. Sulfur Hexafluoride (SF6) 

These six represent stable compounds that can remain in the atmosphere for centuries, 

making them long-lived GHGs.  These long-lived GHGs are reported because they have a 

significant impact on the climate due to their persistence (Forster et al., 2007).  When 

evaluating the emissions of water utilities, the specific GHGs of interest are CO2, CH4, 

and N2O.  If emissions from refrigerants are a concern, HFCs and PFCs can become a 

factor (Huxley, et al., 2009). 

2.5 GHG Measurements 

 The unit of measurement for GHGs is carbon dioxide equivalents (CO2-eqs.).  To 

convert the amount of an individual GHG to CO2-eq., the global warming potential 

(GWP) of that particular GHG is used.  The GWP of a certain GHG denotes how much 

heat that particular GHG can trap relative to CO2.  When reporting GHG emissions, a 

GWP referenced over a 100 year timeframe is used (Huxley, et al., 2009).  The GWP for 

the GHGs important to water utilities are given in Table 2.10.  If a process emitted 1 kg 

of CH4, that would be the equivalent of emitting 25 kg of CO2 in terms of GWP. 

Table 2.10 GWP values for various GHGs [adapted from (Forster, et al., 2007)]. 

Common Name Chemical Formula GWP100

Carbon Dioxide CO2 1 
Methane CH4 25 

Nitrous Oxide N2O 298 
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2.6 GHG Accounting Principles 

 When accounting for GHG emissions, three categories have been established to 

identify the source of the emissions (Huxley, et al., 2009).  These categories are known as 

Scope 1, Scope 2, and Scope 3.  A visual of what each category includes can be seen in 

Figure 2.4.  Scope 1 represents direct emission sources and is described as those sources 

that are owned or controlled by the organization, in this case, the water utility.  Scope 1 

emissions can also be broken down into the following subsets: 

1. Stationary Combustion Sources 
2. Mobile Combustion Sources 
3. Process-Related Emission Sources 
4. Fugitive Emission Sources 

Stationary combustion sources would include items such as stationary back-up generators 

and natural gas-fueled equipment.  A common type of mobile combustion source is any 

utility owned vehicle, such as a maintenance truck.  Process-related emission sources 

would include emissions from treatment plant processes with the exception of the 

combustion of fuel.  For a water utility, this could include ozone generation and granular 

activated carbon (GAC) regeneration.  Fugitive emission sources are categorized as 

stationary source emissions not occurring from an exhaust pipe or stack.  These sources 

can include natural gas pipeline leaks and refrigerant system leaks (Huxley, et al., 2009). 

 Scope 2 represents sources of indirect emissions.  These emissions are caused by 

the production of the electricity, steam, and hot or chilled water which are used by the 

water utility.  These sources must be located outside of the boundary of the utility; if not, 

they would be counted as Scope 1 emissions (Huxley, et al., 2009).   
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 Scope 3 accounts for any other indirect emission sources.  Scope 3 is described as 

optional indirect emission sources because often the water utility must decide on which 

sources to include.  These indirect emission sources can include any source that the utility 

has measureable amount of control over.  Common Scope 3 emission sources are 

employee commuting and business travel.  An example more closely relate to water 

utilities is the emissions associated with the production and transport of chemicals used at 

the treatment plant  (Huxley, et al., 2009). 

 

Figure 2.4 Representation of GHG emission source categories (Huxley, et al., 2009) 
 

 Two common terms used when reporting GHG emissions are carbon footprint and 

carbon inventory.  These terms are sometimes considered interchangeable; however, they 

are not synonyms.  A carbon inventory represents the sum of GHG emissions from 
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Scopes 1 and 2, while a carbon footprint encompasses all three.  This results in the carbon 

footprint of an organization usually becoming larger than its carbon inventory. 

 Another important principle of GHG emissions accounting is establishing proper 

boundaries.  Two approaches have been developed to select what GHG emissions should 

be included within a given boundary.  The equity share method involves reporting the 

emissions based on what percentage of the source of emissions is owned by the water 

utility.  The control method reports all of the GHG emissions from a source under the 

control of the water utility.  The water utility can financially or operationally control a 

source of emissions.  An example of an emission source that may require these decisions 

is a maintenance truck owned by a town but used by the water utility.  Under the equity 

share approach, the emissions associated with the truck would be reported by the town 

and not the utility.  Under the control approach, the emissions by the truck would be 

reported by the utility because it has operational control over the vehicle (Huxley, et al., 

2009). 

2.7 Existing GHG Accounting Tools 

 There are a number of existing instructions on how to quantify and report GHG 

emissions, some of which also include tools to assist in such quantification.  Many of 

these are described by Huxley et al. (2009) and are not developed for specific industries, 

but as an overall guide.  One specific website that offers valuable emissions accounting 

tools is www.ghgprotocol.org (The Greenhouse Gas Protocol, 2011).  The site offers 

tools for emissions from general sources such as stationary combustion and 

refrigeration/air conditioning, as well as specific sector tools for industries such as 
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aluminum and cement.  The only tool designed specifically for water utilities was created 

by the United Kingdom Water Industry Research (UKWIR).  This tool is designed for 

water utilities in the United Kingdom and its newest version costs about $400 (UKWIR, 

2010).  There are no GHG emissions accounting tools designed for water utilities in the 

United States, let alone ones that are publically available.  The only publically available 

tool somewhat related to this area was developed by a Clemson University graduate 

student for conventional wastewater treatment plants (Hicks, 2010). 

2.8 GHG Regulations 

2.8.1 Kyoto Protocol 

 The first action to take place on the subject of GHG emissions was the UNFCCC, 

an international treaty designed to combat the effects of global warming.  In 1997, an 

addition to the UNFCCC was agreed upon called the Kyoto Protocol.  The Kyoto 

Protocol legally bound the industrial countries that signed to reduce their GHG 

emissions.  The nations were tasked with reducing their individual GHG emissions in the 

most efficient way they found.  The Kyoto Protocol also called for cap and trade system 

for carbon emissions in order to provide for additional opportunities to achieve reduction 

goals.  While United States has not ratified the Kyoto Protocol, it has increased 

awareness of the issue of global warming and GHG emissions (UNFCCC, n.d.). 
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2.8.2 The American Clean Energy and Security Act 

 The issue of governmental regulation of GHG emissions has seen an increased 

amount of attention in the United States recently.  The main reason is the American Clean 

Energy and Security Act (American Clean Energy and Security Act of 2009, 2009).  One 

goal of this bill, which is also known as the Waxman-Markey bill, was to reduce carbon 

emissions in the United States.  The major driving forces to accomplish that goal were to 

create a cap and trade system and require electric utilities to provide a certain percentage 

of their electricity by renewable sources.  The bill was passed by the House of 

Representatives in June of 2009 but was never voted on by the Senate.  The session of 

Congress in which it was proposed (111th) concluded without further action; which 

means the bill must be reintroduced to a future session of Congress (H.R. 2454 - 111th 

Congress: American Clean Energy and Security Act of 2009, 2009). 

2.8.3 EPA Reporting Rule 

 Another driving force for the increased awareness of GHG emissions is the recent 

GHG initiatives undertaken by the US Environmental Protection Agency (EPA).  

Following a Supreme Court ruling that GHG emissions are classified as an air pollutant 

by the Clean Air Act, the EPA released an “endangerment finding” stating that GHG 

emissions are harmful to “public health and welfare” (Hoffman, 2010).  The first action 

by the EPA was to invoke a GHG emissions reporting rule in order to gather more 

information on emission quantities.  The reporting rule applies to certain entities that emit 

greater than 25,000 metric tons of CO2-eq. annually.  The sectors involved in reporting 
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include power generation, solid waste landfills, petroleum refineries, and large industrial 

sources such as chemicals and cement.  Water treatment is not yet included in the 

reporting rule; however, programs will likely continue to grow and include an increasing 

number of industries (Hoffman, 2010). 

2.8.4 Voluntary Reporting and Reductions 

 While water production is not currently regulated in terms of GHG emissions, 

there exist voluntary emissions reporting and reduction programs.  These include national 

initiatives such as the Climate Registry along with state-specific initiatives such as the 

California Climate Action registry.  One of the most comprehensive programs is the 

Chicago Climate Exchange, which not only has registration and reduction initiatives but 

also a GHG emissions trading market (Huxley, et al., 2009).  A growing number of states 

also have GHG related initiatives.  Forty three US states have some sort of GHG 

inventory program while 36 have a climate action plan (Hoffman, 2010).  In addition to 

inventories and planning, 22 states have GHG emissions targets in place (Hoffman, 

2010). 

2.9 Water-Energy Nexus 

 An additional topic receiving increased attention is the water-energy nexus.  This 

idea revolves around the fact that producing water requires energy while at the same time 

producing energy requires water (Glassman, et al., 2011).  The water-energy nexus is 

often discussed in the context of the future of the United States electrical grid.  For 

example, Mann (2011) makes the argument that when creating tax incentives for 
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renewable energy sources, the water consumption as well as the GHG emissions of that 

energy source should be taken into account.  The rationale is that while the goal is to 

decrease GHG emissions, utilizing an energy source that requires much greater quantities 

of water will not help reduce the overall environmental impact.  The concept is becoming 

important enough that governments such as Ontario are beginning to evaluate the 

relationship between their energy and water usage (Maas, 2010). 

 The main issue confronting further evaluation of the water-energy nexus is the 

reliability of the data accounting for how much water is consumed while generating a 

given amount of electricity (Glassman, et al., 2011).  An important vocabulary difference 

to note is that water consumption is important, not necessarily water withdrawal.  Water 

consumption involves removing water from its source permanently, while water 

withdrawal removes water then returns that water back to its source.  For example, 

nuclear power withdraws large amounts of water for cooling purposes, but returns the 

majority of that water to its source while only a small portion is lost due to evaporation.  

While the data are incomplete, Glassman et al. (2011) presented what they believed to be 

the most accurate set of water consumption data available (Table 2.11).  The two entries 

for hydroelectric stem from two different sources (the US Geological Survey and the US 

Department of Energy) that use different definitions for water withdrawn versus water 

consumed.  Both of those options relate to hydroelectric processes that include a 

reservoir; the third hydroelectric option is for a run-of-the-river process. 
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Table 2.11 Water consumption data for various electricity production methods 
[adapted from (Glassman, et al., 2011)]. 

Electricity Production Method Water Consumed (gal/MWh) 
Minimum Maximum Average 

Coal 305 550 427.5 
Coal IGCC 200 200 200 

Oil 305 550 427.5 
Natural Gas 185 250 217.5 

Hydroelectric (Source 1) 0 0 0 
Hydroelectric (Source 2) 4500 4500 4500 

Hydroelectric (Run of the River) 0 0 0 
Nuclear 400 720 560 
Wind 0 0 0 

Solar Photovoltaic 0 0 0 
Geothermal 1400 1400 1400 

 

2.11 Summary 

 Due to increasing costs and a greater focus on environmental practices, energy 

use at water utilities has received increased emphasis over the past decade.  Energy use 

investigations have been completed on a national and state-wide scale, with the results 

providing overall average values.  More detailed energy use data are still somewhat 

lacking, including energy prediction equations for various phases of water production.  In 

addition to energy use, GHG emissions have become a significant topic due to potential 

EPA regulation and federal legislation.  Due to this increased emphasis on GHG 

emissions, tools assisting organizations in accounting for their GHG emissions will 

become vital.  While GHG accounting tools exist for generic purposes, there is a need for 

such a tool developed for water utilities in the United States. 
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CHAPTER THREE 
 

RESEARCH OBJECTIVES 
 
 

The main objective of this thesis project was to develop an accounting tool that 

will allow for water utilities to calculate their GHG emissions.  Using this tool, utilities 

will be able to assess their carbon inventory and footprint and their impact on climate 

change.  It will facilitate the creation of an emissions baseline and assist in meeting any 

emissions reduction goals.  The tool will also become beneficial should a mandated GHG 

emissions reporting rule or reduction program apply to water utilities.  To accomplish the 

main objective, this research project focused on the following four sub-objectives: 

1. The first sub-objective was to create an Excel-based program to serve as the 

shell of the GHG accounting tool.  Prior to developing the program, a 

comprehensive literature review was conducted to compile all available data, 

equations, and other useful information related to the GHG emissions of water 

utilities.  For the program itself, Excel was chosen because it is a common, 

widely used tool that can be used by people with a wide range of computer 

experience.  The Excel program contains all the necessary data entry locations 

along with the formulas and data needed to determine the GHG emissions.   

2. The second sub-objective was to develop energy prediction equations for 

different portions of the water production process.  Energy use has been 

shown to be the major contributor to GHG emissions for water production, so 

it was important to provide a way to determine that information if not know to 

the water utility.  Energy use predictions were developed for three portions of 
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water production: (i) raw water collection, (ii) treatment, and (iii) finished 

water distribution.  To construct these equations, data on energy use and 

system characteristics were obtained using surveys conducted by others as 

well as the author of this thesis. 

3. The third sub-objective was to include the water-energy nexus in the GHG 

accounting tool.  The amount of electricity used at a given utility was used to 

determine the amount of water consumed in producing that electricity.  That 

water consumption was then utilized to determine a net water production 

value for the utility. 

4. The fourth sub-objective was to test the program using real data at various 

water utilities.  This process served two functions.  The first was to gather an 

idea of the scale of GHG emissions associated with a variety of water utilities.  

The second function was to obtain feedback about the program from its 

intended users. 
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CHAPTER FOUR 
 

DEVELOPMENT OF GHG EMISSIONS ACCOUNTING TOOL 
 
 

This chapter will discuss the development of the Excel-based tool created to 

calculate the GHG emissions of a water utility.  Each tab of the program is broken up into 

a different section of this chapter.  The user will first choose the applicable electrical grid 

for their utility then enter data concerning the raw water collection, treatment process, 

finished water distribution, and buildings/fleet/other portions of the utility.  The various 

options used to present the GHG emission totals will also be discussed.  References to the 

emission factors used to calculate the GHG emissions will be made throughout the 

chapter.  A copy of the software can be found on the Clemson University Environmental 

Engineering & Earth Sciences department website 

(http://www.clemson.edu/ces/departments/eees/). 

4.1 Electrical Grid 

 As seen in the LCA studies described in sections 2.2 and 2.3, the electrical grid 

being used by a water utility has a large impact on its GHG emissions.  Therefore, it is 

imperative to determine the make-up of that electrical grid as accurately as possible.  The 

goal of the program is to be accurate while still providing the utility with flexibility.  To 

accomplish that goal, a water utility will have four options when selecting their electrical 

grid.  They are presented here in decreasing order of accuracy (option 1 being the most 

accurate and option 4 being the least accurate). 
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 The first option is for the utility is to manually enter the applicable electricity 

emission factors.  These factors can at times be obtained directly from the electricity 

provider and will therefore be the most accurate source of emission factors.  The utility 

will enter the emission factor for CO2, CH4, and N2O.  If these factors are not available, 

the utility will move on to options 2-4. 

 The second option involves using the zip code of the water utility to locate the 

corresponding EPA subregion and the electricity emissions factors that match that 

subregion.  The EPA has broken the country into electrical grid subregions that provide a 

more localized and accurate view of the electrical grid being utilized by an organization 

in that area (Figure 4.1).  To determine in which subregion a water utility resides, a zip 

code search function is included in the program.  The user will simply enter the zip code 

of their water utility; the program will then match their zip code with the corresponding 

EPA subregion and automatically fill in the electricity emission factors.  The electricity 

emission factors that correspond to each EPA subregion are provided in Table B-1.  

Situations will arise where a given zip code lies on the border between subregions, with 

this most often occurring because multiple electricity providers operate in the same zip 

code.  The program will alert the user when this occurs and direct them to an EPA 

website for assistance in locating their proper subregion. 



 54

 

Figure 4.1 National map of the EPA electrical grid subregions (USEPA, 2010). 

 The third option is to utilize the United States national average emission factors.  

Those factors are located in Table B-2. 

 The fourth and last option for electrical grid selection is for the user to manually 

enter in the make-up of their electrical grid.  This would involve selecting percentages of 

the following technologies to compose their electrical grid: coal, natural gas, oil, nuclear, 

hydroelectric, biomass, wind, and solar.  This option would most likely be used by 

utilities that have some sort of renewable electricity generation on site, such as solar 

panels.  Under this circumstance, the local electrical grid would not be a good indication 

of the GHG emissions from electricity production.  Manually entering the electrical grid 

utilizes the emission rates seen in Figure 2.3, which are shown in table form in Table B-3.  
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This option has one significant difference in that the GHG emissions are only measured 

as CO2-eq. and are not broken down into the individual GHGs (CO2, CH4, and N2O) as is 

done in the other three options. 

4.2 Raw Water Collection 

 The first step in determining the GHG emissions from raw water collection is 

entering the annual fuel consumption of this section of the water utility.  The amounts of 

fuel used will then be multiplied by the emission factor for that specific fuel to determine 

the GHG emissions.  The specific fuels that can be included are natural gas, propane, 

liquid propane, diesel, various fuel oils, kerosene, coal, coke, and wood (which would 

also serve as biomass consumption).  The emission factors for each fuel are presented in 

Table B-4.   While these fuels will most likely be utilized in other portions of the water 

utility, some pumping operations are run on fuel combustion and not electricity, even if 

only for a short period of time.  For example, diesel back-up generators and natural gas 

powered pumps are in use in the field. 

 The next category of data to be entered for raw water collection is electricity 

usage.  There are two options for the user to enter their electricity usage.  The first, and 

most accurate, option, if available and measured, is for the water utility to simply enter 

the annual kWh of electricity used in the raw water collection phase.  The second option 

utilizes an energy prediction equation that calculates an annual electricity usage for the 

raw water collection phase of the utility.  The energy prediction equation uses data on the 

total average flow rate, purchased water flow rate, and raw water collection horsepower 
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and will be discussed in further detail in Chapter 5.  Once the annual electricity usage is 

known, from direct entry or the energy prediction equation, the electricity emission 

factors from the electrical grid selected previously will be used to calculate the GHG 

emissions. 

4.3 Treatment Processes 

 The next portion of the water utility to be evaluated is the water treatment 

processes.  Similar to the raw water collection phase, the first data to be entered are the 

annual fuel usage for the treatment phase.  The specific fuels that can be chosen are the 

same as those listed previously and the emission factors for each fuel can be seen in 

Table B-4. 

 The next section of data entered into the program involves direct emission 

sources, or Scope 1 sources, that are specific to the potable water production process.  

First, if ozone is used for oxidation or disinfection, the annual volume generated is 

entered into the program.  This would apply to only those utilities that use air as the 

supply to the ozone generation systems and not pure oxygen.  The reason for this is that 

the nitrogen in the air reacts in the ozone generation process to produce N2O (Huxley, et 

al., 2009).  Next, data are collected on the amount of granular activated carbon (GAC) 

regenerated annually on-site, meaning within the organizational boundary of the water 

utility.  This accounts for the carbon that is oxidized to CO2 and emitted to the 

atmosphere during the regeneration process.  This program assumes that 7.5% of the 

carbon that is regenerated is released as CO2 (Huxley, et al., 2009).  This calculation does 
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not include the fuel used to operate the regeneration process, which should be taken into 

account under the annual fuel usage section of the treatment phase.  The third category of 

data entry in this section involves GHG emissions from water reservoirs.  The water 

utility will enter the surface area of their reservoirs under the corresponding climate 

choices of boreal, temperate, subtropical, and tropical.  The values will then be used with 

emission factors to determine the GHG emissions from these sources.  The last direct 

emissions source specific to the potable water production process involves GHG 

emissions from sludge disposed at a landfill.  The user will enter the annual amount 

(tons) of total organic carbon (TOC) removed by the treatment process that is sent to a 

landfill.  Emission factors are then used to determine the CO2 and CH4 emissions.  The 

emission factors utilized for this entire section of direct emission sources are presented in 

Table B-5. 

 After the direct emission sources, electricity usage for the treatment phase will be 

entered into the program.  As with the raw water collection phase, there are two options 

for entering the electricity usage of this phase of water production.  First, the known 

annual electricity usage in kWh from the treatment phase will be entered into the 

program, which is the most accurate option.  If the electricity usage for treatment is not 

known, literature values will be utilized because an accurate energy prediction equation 

could not be determined.  The process of attempting to develop the treatment energy 

prediction equation will be discussed in Chapter 5.  The second option will consist of the 

user entering the total average flow rate (in MGD) into the program followed by selecting 

the treatment steps used in the specific treatment process.  The literature data used for 
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predicting the treatment energy are adapted from Figure 2.2.  The treatment steps 

available for selection, as well as their corresponding electricity usage (in kWh/1000 

gallons), can be seen in Table 4.1.  The utility also has the option of entering a different 

value for the electricity requirement if it has more accurate data than what is offered in 

the program.  A copy of Figure 2.2 is included in the program so the user can see the 

range of possible electricity usages for each treatment step; this also gives the users a 

frame a reference if they desire to change the electricity use factors. 

 The last section of data collected for the treatment phase concerns chemical 

usage, which represents Scope 3 emissions.  The annual amount (in pounds) of each 

chemical used in the treatment process will be entered into the program and the GHG 

emissions are then calculated using emission factors.  The chemicals included in the 

program are alum, ferric chloride, ferrous chloride, chlorine, sodium hypochlorite, lime, 

polymers, carbon dioxide, oxygen, sodium hydroxide, and ammonia.  The specific GHG 

emission factors for each of these chemicals are shown in Table B-6. 
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Table 4.1 Treatment steps available for selection in the energy prediction option and 
their corresponding electricity use factors [adapted from (Veerapaneni, et al., 
2011)]. 
 

Treatment Step Energy Use 
kWh/1000 gal

Static Mixer 0.00475 
Rapid Mixer 0.0345 

Flocculator (Vert.) 0.0012 
Flocculator (Hor.) 0.0027 

Conv. Sedimentation 0.0015055 
Plate Settlers 0.00168 
Superpulsator 0.0385 

Ballasted Flocculator 0.0635 
Densadeg 0.11 

DAF (high-rate) 0.11 
Gravity Filtration 0.0315 
Pressure Filtration 0.08 
MF/UF-Encased 0.25 

MF/UF-Submerged 0.265 
UV-LPHO 0.0105 

UV-MP 0.0555 
UV/AOP 0.385 
Ozonation 0.060 

Hypochlorite (on-site) 0.066 
Decarbonators 0.155 

Brackish Water RO 3.1 
Wastewater RO 2.55 

Seawater RO 8.25 
Thermal Desalination 21 

 

4.4 Finished Water Distribution 

 The next phase of the water utility to be evaluated is finished water distribution.  

Once again, data pertaining to the annual fuel consumption are entered to evaluate the 
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Scope 1 emissions.  The specific fuel options are identical to the other sections and the 

emission factors for each fuel can be seen in Table B-4. 

 Next, data on the electricity usage of the water utility for finished water 

distribution are entered into the program using two options.  The first option involves 

entering the known annual electricity usage (in kWh) into the program; this will again 

provide the most accurate results.  If the electricity usage of the finished water 

distribution phase is unknown, an energy prediction equation is utilized.  The energy 

prediction equation uses the total average flow rate (in MGD) and total distribution 

pumping horsepower to determine the electricity usage and will be discussed in further 

detail in Chapter 5.  Once the electricity usage in known, the emission factors from the 

electrical grid selected previously are used to determine the GHG emissions from 

electricity production.  

4.5 Buildings/Fleet/Other 

 The last section of the water utility to be evaluated involves sources such as 

administrative buildings and utility-owned vehicles.  First, the annual fuel usage is 

entered.  The specific fuels that can be chosen are identical to those listed in previous 

sections and their corresponding emission factors are presented in Table B-4.  After fuel 

usage, the annual electricity usage (in kWh) is entered.  The emission factors from the 

electrical grid selected previously are then used to calculate the GHG emissions.  This 

section will take into account the fuel and electricity usage that does not fit into the 
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previous three phases but is still consumed by the water utility.  For example, natural gas 

used for building heating would be included in this section. 

 After the fuel and electricity usage has been collected, the GHG emissions from 

mobile combustion sources must be determined.  This will include any vehicle that is 

owned directly by the water utility, but does not include employee-owned vehicles.  Fuel 

used in generators that are considered mobile due to their relatively small size should be 

entered in the annual fuel usage section described earlier.  To determine the CO2 

emissions, only the volume of fuel used each year is required.  The user will therefore 

enter the annual amount of fuel used with the specific fuel options being gasoline, diesel, 

E85, ethanol, and biodiesel.  The CO2 emission factors for each fuel listed can be seen in 

Table B-7.  The emissions of CH4 and N2O depend on more than simply the volume of 

fuel used.  The EPA emission factors rely on the mileage, fuel type, vehicle type, and 

vehicle model year.  The reason for the vehicle type and model year requirement is that 

CH4 and N2O emissions vary based on the type of emissions/catalytic control in place in 

the vehicle.  These control systems vary by vehicle type and model year as newer cars are 

often responsible for fewer emissions due to improved catalytic control.  The user will 

enter the annual mileage under the cell that matches the corresponding vehicle type, fuel 

type, and model year.  The vehicle types available are passenger cars, light-duty trucks, 

and heavy-duty trucks.  The specific CH4 and N2O emission factors for each category are 

located in Tables B-8 through B-10. 
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4.6 Emission Totals 

 Once all the necessary data are entered, this section will provide the various 

annual GHG emission totals to the user.  The GHG emission totals are presented to the 

user in a number of ways.  First, the emissions are broken down into the four water utility 

phases: raw water collection, treatment process, finished water distribution, and 

buildings/fleet/ other.  Within each of these four phases, the GHG emissions are 

separated into the Scopes 1, 2, or 3.  While Scope 3 emissions can include a wide range 

of emission sources, the only source chosen for this tool was emissions from chemical 

production; meaning that the only phase of the water utility that contains Scope 3 

emissions is the treatment process.  This was the only Scope 3 emissions source chosen 

because, as seen in section 2.2, chemical production often represents the second greatest 

source of environmental impacts after electricity/energy use.  After separation into each 

Scope, the emissions are broken down into the individual GHGs (CO2, CH4, and N2O).  

The emissions are also combined into units of kg CO2-eq./year.  There are some 

selections within the program that will only show the amount CO2-eq. and not the 

individual GHGs (CO2, CH4, and N2O); these include manual entry of the electrical grid 

composition and the emissions from chemical production.  The reason for this is that the 

emission factors for these calculations could only be found with units of CO2-eq.  The 

GHG emissions from within each phase are then combined into a carbon inventory or a 

carbon footprint.  A carbon inventory consists of Scope 1 and 2 emissions while a carbon 

footprint sums Scope 1, 2, and 3 emissions.   
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The GHG emissions of the entire water utility are then summed and broken down 

in the same manner as each individual phase.  To provide a more visual representation of 

the source of GHG emissions within the water utility, the program creates four graphs.  

All graphs are based on the GHG emission totals in CO2-eq./year.  The first graph is a pie 

chart that displays the contributions of each phase of the water utility.  The graph will 

illustrate whether raw water collection, the treatment process, finished water distribution, 

or buildings/fleet/other are responsible for the greatest amount of GHG emissions.  An 

example of this graph can be seen in Figure 4.2.  The second graph utilizes the same data 

as the previous graph but in a bar chart form while also plotting the total GHG emissions.  

An example of the second graph is presented in Figure 4.3.  Both of these first graphs 

omit the Scope 3 emissions because these emissions only fall under the treatment phase 

and may tend to skew the graphs.  The third and fourth graphs involve presenting the 

total GHG emissions of the water utility by Scope.  The third graph is a pie chart showing 

the percentages that each Scope contributes to the total GHG emissions.  The fourth 

graph presents the total GHG emissions of each Scope in bar chart form while including 

the total GHG emissions as a reference.  Examples of the third and fourth chart are shown 

in Figures 4.4 and 4.5, respectively. 
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Figure 4.2 Example pie chart from GHG accounting tool depicting relative amount 
of GHG emissions from different phases of a water utility. 

 

 

Figure 4.3 Example bar chart from GHG accounting tool depicting amount of GHG 
emissions from different phases of a water utility. 
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Figure 4.4 Example pie chart from GHG accounting tool depicting relative amount 
of GHG emissions from different emission sources (Scopes) within a water utility. 
 

 

Figure 4.5 Example bar chart from GHG accounting tool depicting amount of GHG 
emissions from different emission sources (Scopes) within a water utility. 
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4.7 Net Water Production 

 This section of the program does not deal with GHG emissions, but rather the 

concept of the water-energy nexus.  The first step in evaluating the impact of the water-

energy nexus is to calculate the amount of water consumed in generating the electricity 

used to power the water utility.  That amount of water is then subtracted from the water 

produced at the utility to give the net water production. 

 The water utility will first enter their average total water production (in MGD) for 

a given year.  Next, the zip code of the utility will be entered in order to determine the 

make-up of the electrical grid.  The zip code will be matched with the corresponding EPA 

subregion, which are identical to the subregions used to determine GHG emission factors 

and are located in Figure 4.1.  The make-up of the different subregion electrical grids can 

be seen in Table B-11.  The total amount of electricity used by the water utility will then 

be separated into the amounts generated by the various electricity production methods in 

the corresponding subregion.  The amount of water consumed to produce the required 

amount of electricity is then calculated using the water consumption factors in Table 4.2.   

The water consumption factors used in the program include some additions and 

deletions from the raw report data shown in Table 2.11.  First, two different values were 

given for coal; one for a traditional thermoelectric process and one for the more recent 

integrated gasification combined cycle (IGCC) process.  The value for the traditional 

thermoelectric process was selected for the program because it is more common and will 

be a better estimate for a wider range of electrical grids.  The data compiled by Glassman 

et al. (2011) do not include data for electricity generation from biomass.  The water 
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consumption value for biomass was assumed to be identical to that of coal and oil.  This 

was selected because biomass is often used in a co-firing process where a small amount 

of biomass is added to a thermoelectric coal process.  The last assumption that was 

required involved the water consumed in a hydroelectric process.  Three values were 

given by Glassman et al. (2011), two different values for hydroelectric with a reservoir 

and one for a run-of-the-river process.  The value of 4500 gal/MWh was chosen, which 

correlates to the more common reservoir hydroelectric process.  A reservoir hydroelectric 

process increases evaporation rates due to the increased surface area of the water, thus 

providing the rationale for selecting the value of 4500 gal/MWh over zero gal/MWh. 

Table 4.2 Water consumption factors for various electricity production methods 
used to determine net water production [adapted from (Glassman, et al., 2011)]. 
 

Electricity Production Method Water Consumed (gal/MWh) 
Coal 427.5 
Oil 427.5 

Natural Gas 217.5 
Biomass 427.5 

Hydroelectric 4500 
Nuclear 560 
Wind 0 

Solar PV 0 
Geothermal 1400 
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CHAPTER FIVE 
 

DEVELOPMENT OF ENERGY PREDICTION EQUATIONS 
 
 

This chapter will discuss the steps taken in order to develop energy use prediction 

equations for the three phases of water production.  The data collection via surveys will 

first be discussed followed by an explanation of the statistical tests used and the general 

process taken to develop the energy use prediction equations.  Lastly, the specific 

development of regression models for the raw water collection, treatment, and finished 

water distribution phases will be discussed. 

5.1 Surveys 

 To develop energy prediction equations, data on the energy use of water utilities 

were required.  The best way to obtain these data was through surveys.  First, the raw 

survey data from the AwwaRF report (Carlson & Walburger, 2007) were obtained.  To 

augment this data set, a new survey (i.e., Clemson survey) was designed and conducted 

for this thesis research.  The questions asked in the Clemson survey can be found in 

Appendix C.  The AwwaRF report used mailed surveys and received a 13% response 

rate.  The Clemson survey used an online survey tool (surveygizmo.com) and emailed the 

links to the perspective water utilities.  The Clemson survey sent survey links to 378 

water utilities with 37 offering qualified responses, providing a 10% response rate.  The 

low response rate is believed to be for multiple reasons.  First, most water utility 

employees are busy people and simply do not wish to take the time to fill out a survey.  In 

addition to the lack of motivation, it became apparent during the survey process that a 
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number of water utilities do not have the desired energy use information.  Some simply 

did not care or know because often, the electrical bills are handled at the town offices and 

the water utility itself does not see the bill; this is especially true for smaller utilities, 

whereas others shared an electric meter making it difficult to separate the charges.   

 In order to sort through the survey responses, two initial filters were used.  If the 

water utility did not provide (i) flow rate information and (ii) electricity use information, 

it was deleted from further analysis.  This action resulted in 155 possibly useful responses 

from the AwwaRF survey and 37 possibly useful responses from the Clemson survey.  

The survey responses illustrate a wide distribution geographically (see Figure 5.1) as well 

as by utility size (see Figure 5.2).  The useful survey responses yielded an average energy 

use of 3.1 kWh/1000 gal. 

. 
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Figure 5.1 Geographical distribution of the combined survey responses. 

 

Figure 5.2 Distribution based on utility size of the combined survey responses. 
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5.2 General Steps for Equation Development 

  Development of the energy prediction equations for different phases of 

water treatment requires a number of various statistical tests.  To analyze the independent 

variables selected, a significance level (or p value) is used to assess whether an 

independent variable was statistically significant.  The goal is to use independent 

variables with a p value less than 0.05.  The p value of 0.05 means that there was a five 

percent chance that the influence of the independent variable on the regression equation 

occurred by coincidence (Ott & Longnecker, 2010). 

 When developing a regression equation with multiple independent variables, an 

analysis for multi-collinearity must be performed.  Multi-collinearity occurs when minor 

changes in the independent variables lead to significant changes in the regression 

coefficients due to the independent variables being related to each other.  Testing for 

multi-collinearity is accomplished using variance inflation factors.  A variance inflation 

factor (VIF) of 1 indicates no multi-collinearity, while a value of 10 indicates potential 

multi-collinearity and should be investigated further (Ott & Longnecker, 2010). 

 Another aspect of the regression equations that must be evaluated is identifying 

observations that have a strong impact on the regression equations.  There are two 

parameters used to gauge this effect.  The difference in fit (DFFITS) locates observations 

that have a large influence on the predicted value of the regression equation.  The 

difference in beta (DFBETAS) locates observations that have a strong effect on the 

individual regression parameters for each independent variable (Belsley, Kuh, & Welsch, 

1980). 
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 In addition to the tests described above, two more are utilized when evaluating the 

regression equations.  First the studentized residual, or RStudent, is used to locate 

dependent variables that deviate far from the predicted value (Ott & Longnecker, 2010).  

To test the goodness of fit for the model, a chi square test is utilized.  This test produces a 

p value, where a value between 0.05 and 0.15 represents a moderately good fit and is 

considered acceptable (Ott & Longnecker, 2010).  P values above 0.15 represent 

increasingly better fits for the model (Ott & Longnecker, 2010).   

To develop the energy prediction equations, the statistics program Statistical 

Analysis Systems (SAS) was utilized because it allows for the simple production of 

multi-linear regression models.  SAS also has the ability to use the lasso selection method 

for identifying significant independent variables.  The lasso selection method was 

recommended by Flom and Cassell (2009) as an alternative to the forward selection 

method used by Carlson and Walburger (2007).  Lasso selects the most appropriate 

combination of independent variables for a linear regression model by minimizing the 

sum of squared errors from the given data set (Tibshirani, 1996). 

 The goal was to form energy prediction equations for three different phases of 

water production: (i) raw water collection, (ii) treatment, and (iii) finished water 

distribution.  The first step was to identify possible independent variables, which were 

reported in both surveys, for each of the three phases of water production.  SAS was then 

used to run the lasso selection method to identify the significant independent variables 

followed by the compilation of a regression model using those independent variables.  

The output regression model was then analyzed using the statistical tests discussed earlier 
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in this section.  After any outlier or erroneous data points were identified and deleted, the 

process of lasso selection, regression model formation, and model analysis was repeated 

until an acceptable regression model was obtained. 

 Two additional items were critical to developing the energy prediction equations.  

The survey data obtained have a large range and variance, so a transformation of the data 

was required.  Both a log, specifically log10, and a square root (SQRT) transformation 

were investigated.  The transformations were performed on both the dependent and 

independent variables, so instead of the independent variable being energy use, it is now 

the log10 of energy use.  The other critical item was choosing whether to use total energy 

use or simply electricity use.  The decision was made to use only electricity use and not 

attempt to combine natural gas, diesel, etc. with electricity for two reasons.  First, the data 

obtained from the AwwaRF report (Carlson & Walburger, 2007) did include the amount 

of various fuels used; however, it did not indicate what phase of water treatment those 

fuels were used to power.  Attempts were made to determine this information, but to no 

avail.  Additionally, the Clemson survey responders were asked in what portion of their 

utility their fuel usage took place.  The majority of those responding indicated fuel usage, 

mostly natural gas, was utilized for building heating.  The assumption of only including 

electricity was deemed valid because building heating was not a process being model by 

the energy prediction equations. 

 

 



 74

5.3 Raw Water Collection 

 The first model to be developed was for the raw water collection phase of the 

water utility.  The first step in the formation of this model is to select the potential 

independent variables for future analysis, with the following variables selected: average 

groundwater flow, average surface water flow, average purchased water flow, total 

average flow, average well depth, and source water pumping horsepower. 

 Next, the survey data were narrowed to the water utilities that provided electricity 

use for the raw water collection phase.  If independent variables, such as pumping 

horsepower, were left blank by the utility that plant would simply be ignored by SAS 

when forming a regression model.  The data used to form the raw water collection model 

are presented in Table D-1. 

 Two small adjustments to the data were then required to be able to model a 

regression equation.  First, a value of zero needed to be a valid entry for multiple of the 

potential independent variables, which would cause an error when performing the log10 

transformation.  To solve this issue, a value of one was added to each of these 

independent variables.  However, solving the first issue may have created another one in 

that adding a value of one to flow rate values that can often been in the range of 1-10 can 

cause problems in the modeling.  This problem was solved by using the thousand gallons 

per day (kGD) flow rate values instead of the MGD values. 

 Before running SAS, five water utilities were deleted.  Four (CA023, OK003, 

PA006, and WY001) were deleted because they indicated zero pumping hp but listed a 
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non-negligible electricity use.  The only major electricity consumption source in the raw 

water collection phase is pumping, so these data points did not make sense and were 

deleted.  The most likely cause of the erroneous listing is that the utilities did not know 

their pumping hp and left that entry blank on their survey, which was then turned into a 

zero by the time the report data was published.  An additional point (CA045) was deleted 

because it listed an energy use of 8 kWh/yr while having a pumping hp value of 270.  

These values are not logical; therefore, the data point was deleted. 

 The first regression model to be formed was the log10 model.  The lasso selection 

method was utilized and the following independent variables were selected: 

1. Log10(Total Average Flow) 
2. Log10(Source Water Pumping HP) 
3. Log10(Total Average Flow)* Log10(Source Water Pumping HP) 

SAS was then used to form a regression model using these three independent variables.  

Three data points were found to be outliers and deleted.  CA011 and CA046 fell well 

outside the general range and had residual values that were too large (RStudent values 

greater than │4│).  PA004 had an unusually large influence on the model while having a 

relatively high value for electricity use for the given hp value.   

 The lasso selection model was run again, yielding an identical independent 

variable selection.  The model formed using these variables illustrate problems with 

multi-collinearity, as seen with VIFs greater than 10.  To correct this, centering was 

performed where each water utility has the mean of each independent variable subtracted 

from the corresponding variable during model formation.  This process corrected the 

multi-collinearity problem and also illustrated that the independent variable Log10(Total 
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Average Flow)* Log10(Source Water Pumping HP) was no longer significant.  A 

regression model was then formed using the remaining two independent variables.  When 

analyzing this new model, some data points with large residuals appear to be those 

utilities with purchased water flows.  In these cases the water is provided at pressure 

already and the energy used to pump the water is included in the cost of buying the water 

and not the energy use of the utility.  The purchased water flow was not indicated by the 

lasso selection, but was used as an independent variable by Carlson and Walburger 

(2007).  In order to add purchased water flow rate as an independent variable, the raw 

water collection model was split into two; one for utilities with purchased water flows 

and one for those without.  Once split into two separate models, the purchased water flow 

rate now became a significant variable.  Upon analyzing the two models, a few more data 

points were located that merit deletion.  VA005 is on the extreme upper end of the range 

and the raw data shows a likely estimation of electricity use rather than actual data.  Two 

utilities show a low electricity value compared to its other characteristics, MD001 and 

CA020.  All three points were deleted and the models were run again.  The results 

showed a good fit for both models.  The residuals are evenly distributed and while there 

are points with high levels of influence on the model, there is no single point with an 

overwhelming amount of influence. 

The final log10 model for raw water collection without purchased water flow is: 

ܮ ଵ݃ሺݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ	ሾܹ݄݇/ݎݕሿሻ ൌ

													3.04430  0.42367 ∗ ܮ ଵ݃ሺ݈ܶܽݐ	݁݃ܽݎ݁ݒܣ	ݓ݈ܨ	ሾ݇ܦܩሿሻ   (2) 

													0.57216 ∗ ܲܪ	݃݊݅݉ݑܲ	݊݅ݐ݈݈ܿ݁ܥ	ݎ݁ݐܹܽ	ݓଵሺܴܽ݃ܮ  1ሻ 
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The model has an R2 value of 0.79 and a graph comparing the actual electricity use and 

the predicted electricity use can be seen in Figure 5.3. 

 

Figure 5.3 Illustration of the actual raw water collection electricity use from various 
water utilities without purchased water flow versus the value of the electricity use 
predicted by the regression model (n=64).  
 

The final log10 model for raw water collection with purchased water flow is: 

ܮ ଵ݃	ሺݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ	ሾܹ݄݇/ݎݕሿሻ ൌ 

2.91331  0.80696 ∗ ܮ ଵ݃ሺ݈ܶܽݐ	݁݃ܽݎ݁ݒܣ	ݓ݈ܨ	ሾ݇ܦܩሿሻ  

0.51377 ∗ ܮ ଵ݃ሺܴܽݓ	ݎ݁ݐܹܽ	݊݅ݐ݈݈ܿ݁ܥ	݃݊݅݉ݑܲ	ܲܪ  1ሻ െ                    (3)        

													0.35124 ∗ ሿܦܩሾ݇	ݓ݈ܨ	ݎ݁ݐܹܽ	݀݁ݏ݄ܽܿݎݑܲ	݁݃ܽݎ݁ݒܣଵሺ݃ܮ  1ሻ 
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The model has an R2 value of 0.87 and a graph comparing the actual electricity use and 

the predicted electricity use is illustrated in Figure 5.4. 

 

Figure 5.4 Illustration of the actual raw water collection electricity use from various 
water utilities with purchased water flow versus the value of the electricity use 
predicted by the regression model (n=14).  
 

 A second raw water collection regression model was investigated using a square 

root transformation of the data.  In addition to the original five deleted data points, three 

additional points were deleted before running SAS due to the reliability issues illustrated 

in forming the log10 regression model.  These points were CA046, PA004, and VA005.  

The lasso selection method was utilized and the following independent variables were 

selected: 
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1. SQRT(Total Average Flow) 
2. SQRT(Source Water Pumping HP) 
3. SQRT(Total Average Flow)* Log10(Source Water Pumping HP) 

SAS was then used to form a regression model using these three independent variables.  

Two data points were found to have large residuals and lie well outside the range of the 

rest of the data.  These points, PA007 and PA008, were deleted.  The lasso selection 

method chose identical independent variables and the regression model was run again.  

Two additional data points, OR003 and CA020 were found to have large residuals and 

were deleted.  An additional point, IL002, had an abnormally large influence on the 

model because it was the only point in the upper end of the range.  The data point was 

deleted so the model did not rely so heavily on a single point.  At this point, the same 

issues that affected the log10 transformation model appeared.  The independent variable 

SQRT(Total Average Flow)* Log10(Source Water Pumping HP) was removed to prevent 

multi-collinearity and SQRT(Average Purchased Flow) was added as an independent 

variable.  Once this model began to be analyzed, the pitfall of the SQRT transformation 

became apparent.  The regression model shows one data point with an enormous amount 

of influence on the model coefficients.  When that point is deleted, another single data 

point shows an abnormally large amount of influence and this trend continues on.  These 

points that have such a large influence are utilities on the higher end of electricity usage.  

The SQRT transformation does not distribute the data points as evenly as the log10 

transformation, thus giving any single large electricity user a large amount of influence 

on the model coefficients.  Due to the uneven distribution of the SQRT transformation 
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and its inability to accurately model the upper range of electricity usage, the log10 

transformation models were chosen for the raw water collection phase. 

5.4 Treatment Processes 

 The next model to be developed was for the treatment phase of the water utility.  

A large number of potential independent variables were selected for analysis.  First, a 

group of flow rate variables were chosen: average groundwater flow, average surface 

water flow, average purchased water flow, and total average flow.  Next, various 

treatment schemes were utilized as possible independent variables: conventional 

treatment, direct filtration, slow sand filtration, dissolved air flotation (DAF), membrane 

filtration, nanofiltration, and RO.  Lastly, individual treatment steps were selected that 

increase the energy use of the treatment process: pressure filtration, aeration, ozone, 

softening, and UV disinfection.   

 The survey data were then narrowed to the water utilities that provided electricity 

use data for all three phases of water production (raw water collection, treatment, and 

finished water distribution).  This step was meant to ensure that only the treatment phase 

electricity use was utilized in the model formation.  If a utility reported electricity data for 

treatment and not raw water collection, there was a possibility that the electricity required 

by raw water collection would be included in the value reported under treatment.  As the 

plants that provided data to the AwwaRF report (Carlson & Walburger, 2007) were 

unable to be contacted, using only utilities that provided electricity data to all three 
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phases was the most accurate option.  The data set used to form a possible treatment 

phase model can be seen in Tables D-2 and D-3. 

 Once again, adjustments to the data were required in order to create a regression 

model.  Similar to the raw water collection model, a value of one was added to the flow 

rate variables (except the total flow) in order to allow for a value of zero.  The unit of 

kGD was again utilized for flow rate variables for the same reason as in the raw water 

collection phase.  For the various treatment schemes and individual treatment steps a 

system of one and zero was adopted to be used as an on/off switch for each variable.  A 

value of one corresponds to the given water utility utilizing the corresponding treatment 

process or step while a value of zero indicates that technology is not used.  These values 

were not transformed when evaluating a regression model, but were left as a one or zero. 

 The log10 transformation was assessed first and the lasso selection method was 

used to identify significant independent variables.  The only variable identified was 

log10(total average flow).  Upon forming a regression model using log10(total average 

flow) as the independent variable, one data point, CA030, was shown to have a 

substantial amount of influence on the regression coefficients.  This data point was 

deleted so the model did not rely heavily on a single data point.  The lasso selection 

method was run again with identical results.  A regression model was formed again with 

poor results.  The model has a low R2 value of 0.51 while also illustrating no obvious 

data points for further deletion. 

 To form a more useful model, a new approach was attempted.  The majority of 

treatment plants are either conventional or direct filtration, so all other water utilities 
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were deleted to narrow the focus of the model formation.  The following treatment 

schemes (and utilities) were deleted: slow sand filtration (IL006, TN001, and WI003), 

membrane filtration (CU25), and nanofiltration (CA018).  The lasso selection method 

once again showed log10(total average flow) as the only significant variable, with the 

regression model results not improving over the last model.  A model was then attempted 

using the independent variables log10(total average flow) and all the individual treatment 

steps listed previously.  This resulted in a little improvement of the model, increasing the 

R2 value to only 0.59. 

 The last step taken to provide a useful treatment electricity prediction model was 

to form a model for only conventional treatment plants being that they are the most 

common treatment process used.  The lasso selection method was again utilized and the 

following independent variables were identified: 

1. Log10(Average Groundwater Flow) 
2. Log10(Average Surface Water Flow) 
3. Log10(Total Average Flow) 
4. Aeration 

A regression model was formed using these independent variables.  The result was 

another poor model with an R2 value of 0.54 and no obvious option for improvement. 

 It has been concluded that an acceptable electricity prediction model for the 

treatment process could not be formed using the current data set.  One possible reason is 

that even with the attempts made to ensure only electricity for the treatment process was 

analyzed, there was no way to confirm this, and therefore some electricity from another 

phase of the water utility may have been included.  For example, a utility may have 
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provided the electrical demand of its distribution pump stations under the finished water 

distribution phase, while having the electrical demand of the high service pumps remain 

in the number entered under the treatment phase.  These pumps are at the beginning of 

the distribution system and are often responsible for the majority of the distribution 

electrical demand, but are located on the same site (and often same electrical meter) as 

the treatment plant.  This situation would have qualified the utility for inclusion in the 

treatment phase model formation.  The main issue stems from the inability of most 

treatment plants to accurately track energy consumption for different sections of the 

process.  Developing an accurate treatment process energy prediction model would 

require improved energy accounting by water utilities.  To include some form of 

electrical demand prediction in the GHG emissions accounting tool, literature data were 

utilized.  More specifically, the data shown in Table 4.1, which corresponds to Figure 2.2, 

were used in the tool. 

5.5 Finished Water Distribution 

 The last electricity prediction model to be developed was for the finished water 

distribution phase of the water utility.  Once again, the potential independent variables to 

be used in forming the model needed to be determined.  The independent variables 

selected were total average flow, length of water mains, distribution pumping hp, average 

distribution pressure, and elevation change. 

 Next, the survey data were narrowed to the water utilities that provided electricity 

use for the finished water distribution phase.  If independent variables, such as pumping 
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horsepower, were left blank by the utility that plant would simply be ignored by SAS 

when forming a regression model.  The data used to form the finished water distribution 

model are presented in Table D-4. 

 Similar to the previous data, a change was required of the finished water 

distribution data in order to use the log10 transformation.  A value of one was added to the 

length of water mains and elevation change variables in order for a value of zero to be a 

valid entry from those variables.  The other independent variables should not be zero so 

they were left unchanged.  Before running SAS, six water utilities were deleted from the 

data set.  Four (CA038, TX008, VT003, and WY001) were deleted because they 

indicated zero pumping hp but listed a non-negligible electricity use.  As in the raw water 

collection phase, the only major electricity consumption source in finished water 

distribution is pumping, so these data points were not logical.  The additional two utilities 

(IL002 and IL003) were deleted because of a likely entry error.  The utilities had identical 

data but listed different flow rates.  It is likely that they were two different plants that fed 

a single distribution system. 

 The first regression model to be evaluated utilized the log10 transformation.  The 

lasso selection method was used and the following independent variables were selected: 

1. Log10(Total Average Flow) 
2. Log10(Distribution Pumping HP) 
3. Log10(Elevation Change) 
4. Log10(Total Average Flow)* Log10(Distribution Pumping HP) 
5. Log10(Distribution Pumping HP)* Log10(Elevation Change) 

A regression model was then formed using these independent variables.  Upon analyzing 

the results, two data points were found to be unusual and were deleted.  The first utility 
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(TN001) only listed an electricity use of 151.54 kWh/yr, which is too low to be feasible.  

The second utility (NC010) reported an abnormally large electricity usage that is likely 

due to an entry error.  The lasso selection method was then run again and selected all of 

the independent variables as well as a number of interactions (independent variables 

multiplied together).  The regression model formed using this many variables caused 

multi-collinearity problems.  Centering was used to remove this issue as well as to help 

identify which independent variables are significant.  After this process, three 

independent variables were identified: Log10(Total Average Flow), Log10(Distribution 

Pumping HP), and Log10(Elevation Change).  A new regression model was formed using 

these three variables and two more data points were identified for deletion.  Plants IL006 

and MD002 both had electricity usages that were too low, especially given their hp 

values. 

 The lasso selection method was then run again to identify independent variables, 

with the following three being selected: 

1. Log10(Total Average Flow) 
2. Log10(Distribution Pumping HP) 
3. Log10(Total Average Flow)* Log10(Distribution Pumping HP) 

A new regression model was formed using these three independent variables.  One data 

point (NC004) was found to have an abnormally large amount of influence on the model 

while also listing low values for flow and pumping hp considering the electrical demand.  

This utility was deleted and the regression model was run again.  Another data point 

(CA016) was identified as a possible outlier due to its large residual and large hp value 

for the given electrical demand.  The model was also again showing multi-collinearity 
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problems, which centering was used to correct.  After this process, two independent 

variables were identified as significant: Log10(Total Average Flow) and 

Log10(Distribution Pumping HP).  A regression model was once again formed using these 

variables.  One additional data point (CA042) was deleted because of its large residual 

and small electrical demand considering the flow and pumping hp listed.  This final 

model provided a good fit for the data.  The residuals were evenly distributed across a 

fairly constant band.  Although there were individual data points with influence on the 

model, no single point dominated. 

 The final log10 model for finished water distribution is: 

ܮ ଵ݃ሺݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ	ሾܹ݄݇/ݎݕሿሻ ൌ

													3.6538  0.4259 ∗ ܮ ଵ݃ሺ݈ܶܽݐ	݁݃ܽݎ݁ݒܣ	ݓ݈ܨ	ሾܦܩܯሿሻ   (4)      

													0.6590 ∗ ܮ ଵ݃ሺ݄݀݁ݏ݅݊݅ܨ	ݎ݁ݐܹܽ	݊݅ݐݑܾ݅ݎݐݏ݅ܦ	݃݊݅݉ݑܲ	ܲܪ  1ሻ 

The model has an R2 value of 0.69 and a graph comparing the actual electricity use and 

the predicted electricity use is shown in Figure 5.5. 
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Figure 5.5 Illustration of the actual finished water distribution electricity use versus 
the value of the electricity use predicted by the regression model (n=86).  
 

 A second finished water distribution regression model was investigated using a 

SQRT transformation of the data.  In addition to the original six deleted data points, four 

additional points were deleted before running SAS due to the reliability issues illustrated 

in forming the log10 regression model.  These points were IL006, MD002, NC010, and 

TN001.  The lasso selection method was again utilized and the following independent 

variables were selected: 

1. SQRT(Total Average Flow) 
2. SQRT(Length of Water Mains) 
3. SQRT(Distribution Pumping HP) 
4. SQRT(Total Average Flow)*SQRT(Distribution Pumping HP) 

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

P
re

d
ic

te
d

 D
is

tr
ib

u
ti

on
 E

le
ct

ri
ci

ty
 U

se
 (

k
W

h
/y

r)

Actual Distribution Electricity Use (kWh/yr)



 88

5. SQRT(Length of Water Mains)*SQRT(Distribution Pumping HP) 

SAS was then used to form a regression model using these five independent variables.  

Two data points (MO002 and VA005) were shown to have very large residuals and were 

deleted.  The lasso selection method chose identical independent variables and the 

regression model formation was run again.  There were two data points (WI001 and 

CU018) which were identified as having large influences on the model coefficients.  

These two points lie on the extreme upper end of the range and were deleted so the model 

did not rely so heavily on two points.  The lasso selection method was run again and 

identified the following independent variables: 

1. SQRT(Total Average Flow) 
2. SQRT(Distribution Pumping HP) 
3. SQRT(Total Average Flow)*SQRT(Distribution Pumping HP) 

The model illustrated problems with multi-collinearity.  Centering was once again used to 

handle this problem and also illustrate that SQRT(Total Average Flow) 

*SQRT(Distribution Pumping HP) was the least significant independent variable.  The 

regression model was run again with this variable removed to prevent future multi-

collinearity problems.  The SQRT transformation poorly models the larger electricity 

users compared to the log10 transformation.  To confirm that the regression model using 

the log10 transformation was a better model for the finished water distribution phase, the 

sum of squared errors was compared for both transformations.  The model using the log10 

transformation had a lower sum of squared errors (5.5*1015 versus 6.3*1015 for the SQRT 

transformation), verifying it as the superior model. 
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CHAPTER SIX 
 

IMPLEMENTATION OF THE GHG EMISSIONS ACCOUNTING TOOL 

6.1 Data and Results from Water Utility Testing 

 To implement and test the GHG emissions accounting tool, seven water utilities 

located in Georgia, North Carolina, and South Carolina were visited.  These utilities 

provided the input data for the program as well as feedback on the tool itself.  In order to 

determine GHG emissions from electricity, the emission factors from the corresponding 

EPA subregion were used for all of the water utilities.  The participating utilities were 

identified as Utility A, B, C, etc. in this section. 

 The first water utility, Utility A, produces an average flow of 4.21 MGD and has 

two treatment plants located next to each other, which use a common raw water 

collection and finished water distribution system.  The process train used at Utility A is 

conventional treatment with on-site hypochlorite generation.  The annual electricity and 

stationary combustion fuel usage for Utility A can be seen in Table 6.1.  The annual 

chemical usage as well as the fuel usage and mileage from the vehicle fleet are presented 

in Table F-1 and F-2, respectively.  The utility operates partially as a wholesaler, which 

means the responsibility for the distribution pumping and final water usage (fuel usage to 

check meters, make repairs, etc.) falls on the purchasing entities instead of the utility.  

This causes lower emissions because of the decreased electricity and fuel demand 

associated with operating fewer pumps and vehicles.  The carbon inventory of Utility A 

was calculated to be 2,299,854 kg CO2-eq./yr or 1,496 kg CO2-eq./MG.  The carbon 
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footprint of Utility A was determined to be 2,546,326 kg CO2-eq./yr or 1,656 kg CO2-

eq./MG. 

Table 6.1 Annual electricity and stationary combustion fuel usage for Utility A.   
 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 1330200 34.3 0 

Treatment Process 2079309* 0 0 
Finished Water Distribution 1032594 0 0 

Buildings/Fleet/Other 0 0 283.2 

*The electricity listed under the treatment phase includes the high service distribution 
pumps and the administration buildings. 
 

 The next water utility, Utility B, produces an average flow of 83.4 MGD.  Utility 

B has two treatment plants separated from each other, which have individual raw water 

collection pumps but a common finished water distribution system.  Utility B utilizes 

conventional treatment with one plant using on-site hypochlorite generation.  The annual 

electricity and stationary combustion fuel usage for Utility B are shown in Table 6.2.  

The annual chemical usage as well as the fuel usage and mileage from the vehicle fleet 

can be seen in Table F-1 and F-3, respectively.  The carbon inventory of Utility B was 

calculated to be 49,730,174 kg CO2-eq./yr or 1,633 kg CO2-eq./MG.  The carbon 

footprint of Utility B was determined to be 53,849,655 kg CO2-eq./yr or 1,768 kg CO2-

eq./MG. 
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Table 6.2 Annual electricity and stationary combustion fuel usage for Utility B.   
 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 24098121 0 0 
Treatment Process 47578837* 0 0 
Finished Water Distribution 0 0 0 
Buildings/Fleet/Other 263393 0 7733 

*The electricity listed under the treatment phase includes the distribution pumps. 
 

 Utility C produces an average flow of 74.7 MGD and has two treatment plants 

separated from each other, which have individual raw water collection pumps but a 

common finished water distribution system.  Utility C has a direct filtration with 

ozonation treatment process.  The annual electricity and stationary combustion fuel usage 

for Utility C are presented in Table 6.3.  The annual chemical usage can be seen in Table 

F-1.  The fuel usage and mileage from the vehicle fleet were not provided.  The carbon 

inventory of Utility C was calculated to be 40,185,724 kg CO2-eq./yr or 1,473 kg CO2-

eq./MG.  The carbon footprint of Utility C was determined to be 47,887,598 kg CO2-

eq./yr or 1,755 kg CO2-eq./MG. 
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Table 6.3 Annual electricity and stationary combustion fuel usage for Utility C.   
 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 9859432 0 0 
Treatment Process 45063794* 0 0 
Finished Water Distribution 4000703 0 0 
Buildings/Fleet/Other 0 0 0 

*The electricity listed under the treatment phase includes the high service distribution 
pumps from both plants, the raw water collection pumps from one plant, and the 
administrative buildings. 
 

 Utility D produces an average flow of 55.4 MGD with one treatment plant which 

uses a conventional treatment process train.  The annual electricity and stationary 

combustion fuel usage for Utility D can be seen in Table 6.4.  The annual chemical usage 

was not provided.  The fuel usage from the vehicle fleet is shown in Table F-4, but the 

annual mileage from the vehicle fleet was not provided.  The carbon inventory of Utility 

D was calculated to be 18,218,588 kg CO2-eq./yr or 900 kg CO2-eq./MG.  The carbon 

footprint of Utility C is the same as the carbon inventory because no chemical usage data 

was provided. 
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Table 6.4 Annual electricity and stationary combustion fuel usage for Utility D.   
 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 0 0 0 
Treatment Process 28086457* 0 0 
Finished Water Distribution 2273254 0 0 
Buildings/Fleet/Other 1458424 0 4128 

*The electricity listed under the treatment phase includes the raw water collection and 
high service distribution pumps. 
 

 The next utility to be evaluated is Utility E which produces an average flow of 

60.3 MGD.  Utility E has two treatment plants separated from each other that have 

individual raw water collection pumps but a common finished water distribution system.    

The annual electricity and stationary combustion fuel usage for Utility E can be seen in 

Table 6.5.  The values for fuel usage are zero because they were not provided.  The 

annual chemical usage along with the vehicle fleet fuel usage and mileage were also not 

provided.  The carbon inventory of Utility E was calculated to be 21,186,389 kg CO2-

eq./yr or 962 kg CO2-eq./MG.  The carbon footprint of Utility E is the same as the carbon 

inventory because no chemical usage data was provided. 
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Table 6.5 Annual electricity and stationary combustion fuel usage for Utility E.   
 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 0 0 0 
Treatment Process 41531000* 0 0 
Finished Water Distribution 0 0 0 
Buildings/Fleet/Other 0 0 0 

*The electricity listed under the treatment phase includes the entire utility. 
 

 Utility F produces an average flow of 34 MGD.  Utility F has two treatment 

plants; however, data for only one plant was provided.  The two plants have separate raw 

water collection pumps but feed a common distribution system.  Therefore, the GHG 

emissions associated with the shared distribution systems as well as the shared vehicle 

fleet and administrative offices were not included.  The treatment plant that was 

evaluated uses a conventional treatment process.  The annual electricity and stationary 

combustion fuel usage for Utility F are presented in Table 6.6.  The annual chemical 

usage can be seen in Table F-1; while the fuel usage and annual mileage from the vehicle 

fleet associated with this plant are illustrated in Table F-5.  The carbon inventory of 

Utility F was calculated to be 16,678,073 kg CO2-eq./yr or 1,343 kg CO2-eq./MG.  The 

carbon footprint of Utility F was determined to be 20,315,870 kg CO2-eq./yr or 1,636 kg 

CO2-eq./MG. 
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Table 6.6 Annual electricity and stationary combustion fuel usage for Utility F.   
 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 6798000 693.5 0 
Treatment Process 25490000* 1387 0 
Finished Water Distribution 0 0 0 
Buildings/Fleet/Other 0 0 0 

*The electricity listed under the treatment phase includes the raw water collection and 
high service distribution pumps. 
 

 The last water utility to be evaluated is Utility G and produces an average flow of 

17.5 MGD.  Utility G has one treatment plant which uses conventional treatment with 

superpulsators.  The utility operates solely as a wholesaler, which decreases the GHG 

emissions associated with the distribution system and vehicle fleet as those will fall under 

the responsibility of those that purchase the water.  The annual electricity and stationary 

combustion fuel usage for Utility G can be seen in Table 6.7.  The annual chemical usage 

is shown in Table F-1; while the fuel usage and mileage from the vehicle fleet are 

presented in Table F-6.  The carbon inventory of Utility G was calculated to be 5,734,619 

kg CO2-eq./yr or 897 kg CO2-eq./MG.  The carbon footprint of Utility G was determined 

to be 7,189,640 kg CO2-eq./yr or 1,125 kg CO2-eq./MG. 
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Table 6.7 Annual electricity and stationary combustion fuel usage for Utility G. 

Energy Usage 
Electricity Diesel Natural Gas 

Phase of Utility kWh/yr MMBtu/yr MMBtu/yr 
Raw Water Collection 4538400 0 0 
Treatment Process 2305800 468 0 
Finished Water Distribution 3952800 0 0 
Buildings/Fleet/Other 275400 0 0 

 

6.2 GHG Emissions Data Analysis 

 The best option to compare the water utilities to each other is to use the carbon 

inventory.  The reason for this is that not every chemical used at the various utilities was 

available in the GHG emissions accounting tool, leaving the possibility that one utility 

may have a larger footprint than could have been calculated.  A visual comparison of the 

normalized carbon inventories is presented in Figure 6.1.  The average carbon inventory 

for the utilities that tested the GHG emissions accounting tool was 1240 kg CO2-eq./MG.  

While only limited analysis can be done with seven data points, a few observations can 

be pointed out in Figure 6.1.  First, an economy of scale effect does not seem to be in 

place with this data set as the smallest and largest utilities in terms of flow actually have 

fairly similar carbon inventories.  A hypothesis can be made as to why the three lowest 

carbon inventories were from Utility D, E, and G.  Utility D explained that it strives to be 

as progressive and environmentally friendly as possible, which would lead to decreased 

energy use and therefore a lower carbon inventory.  Utility E did not include any data on 

fuel usage and emissions from a vehicle fleet, which may have caused the lower 
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inventory.  Utility G operates completely as a wholesaler so it lacks the GHG emissions 

from a large distribution system and vehicle fleet that most of the other utilities have. 

 

Figure 6.1 Normalized carbon inventories of the water utilities that tested the GHG 
emissions accounting tool. 
 

 Another observation that bears comment is that two of the seven utilities tested 

have an annual GHG emissions amount that exceeded the threshold of the EPA reporting 

rule discussed in Section 2.8.3.  The value reported to the EPA would be the carbon 

inventory, of which both Utility B and C exceeded the 25,000 metric tons of CO2-eq./yr 

limit with values of 49,700 and 40,200 metric tons of CO2-eq./yr, respectively.  If an 

average carbon inventory of 1240 kg CO2-eq./MG is assumed, water utilities with a flow 

rate greater than 55.2 MGD will have annual GHG emissions greater than the EPA 
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reporting rule limit.  The electrical grid being utilized can have a significant effect on 

both the average carbon inventory and the average flow rate required to exceed the EPA 

reporting rule threshold.  To analyze this effect, the seven utilities were also tested using 

the three lowest and highest GHG emitting EPA subregions as well as the national 

average emission factors.  The results of this analysis are presented in Table 6.8.  

Table 6.8 Average carbon inventory and flow rate required to exceed EPA reporting 
rule limit of the water utilities tested when using the three highest and lowest GHG 
emitting EPA subregions and national average emission factors. 

EPA Subregion 
Acronym 

Carbon Inventory 
(kg CO2-eq./MG) 

Flow Rate to Exceed EPA 
Reporting Rule (MGD) 

RMPA 2190 31.3 
SPNO 1805 37.9 
SRMW 1786 38.3 

National Grid 1311 52.2 
CAMX 698 98.1 
NYUP 698 98.1 
AKMS 554 123.5 

 

 The only source of literature data found that could be used to compare with the 

testing results comes from LCA studies.  As the LCA studies included more than what is 

measured by the carbon inventory, the carbon footprint of the water utilities was the more 

appropriate value to compare.  The comparison between the data from Utilities A-G and 

the literature data can be seen in Figure 6.2.  The reason the literature data was presented 

as horizontal lines and not data points is because the LCA studies did not provide flow 

rate data, but GHG emissions based on a functional unit.  The literature data represent 

two extremes of carbon footprint values in that Friedrich (2002) only took into account 
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the treatment plant itself and Stokes and Horvath (2006) were analyzing importing water 

over long distances.  Considering these limitations, it was encouraging that all of the 

utilities evaluated fell in between the limits of the literature values. 

 

Figure 6.2 Comparison between the carbon footprints of Utilities A-G and literature 
data [literature data adapted from (Friedrich, 2002; Stokes & Horvath, 2006)]. 
 

 The only utility that can fully illustrate the sources of GHG emissions is Utility G 

because it was the only utility to be able to separate the four different phases.  The 

relative amounts of GHG emissions from each phase are presented in Figure 6.3.  The 

major contributor to the carbon inventory of Utility G is pumping in that raw water 

collection and finished water distribution account for 75% of the emissions.  Utility G 
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operates solely as a wholesaler so it is expected that finished water distribution would 

account for more emissions for utilities that operate a larger distribution network.  The 

other source type of GHG emissions to analyze are Scopes 1, 2, and 3.  For the utilities 

tested, Scope 2 emissions dominated, making up at least 80% of the carbon footprint. 

 

Figure 6.3 Relative amounts of GHG emissions from each phase of Utility G. 

6.3 Energy Use Prediction Equations Evaluation 

 While collecting data to evaluate the GHG emissions accounting tool, data were 

also gathered to test the energy prediction equations that were developed and described in 

Chapter 5.  The results of these tests are displayed in Table 6.9.  The testing was done for 

separate phases of each water utility whenever possible.  If a utility was not able to 

separate treatment and distribution electricity usages, for example, then that combination 

was compared with the combined prediction results for those two phases.  Though the 

Raw Water Collection

Treatment

Distribution

Buildings/Fleet/Other
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sample size is small, one thing to note is that the predictions for the treatment phase or 

treatment and distribution phases were low by 60-80%.  The treatment phase prediction 

function appeared to be the weakest because of the inability to fit a regression model and 

also having to rely on a single source of literature data for predictions.  These results 

somewhat confirmed this conclusion.  One problem with the literature data used in the 

program is that they lack data for solids/sludge handling, which could help explain some 

of the difference in the predictions because the solids handling equipment can include 

large energy users such as thickeners (centrifuges, etc.) and additional pumping.  A larger 

data set would be required to more accurately evaluate the performance of the energy use 

predictions equations.  Even with a larger data set and improved models, there is a limit 

to how accurately energy use can be predicted.  A prediction model will never be as 

accurate as measured data. 

Table 6.9 Results of energy use prediction equation testing. 

Utility Phase Utility 
Actual 

Electricity Use 
Predicted 

Electricity Use 
Percent 

Difference 
kWh/yr kWh/yr 

Raw Water Collection Utility A 1,330,000 1,172,000 -12% 
Raw Water Collection Utility B 24,098,000 15,387,000 -36% 
Raw Water Collection Utility F 6,798,000 7,912,000 16% 
Raw Water Collection Utility G 4,538,000 6,684,000 47% 

Treatment Utility G 2,306,000 668,000 -71% 
Treatment & Distribution Utility A 3,112,000 656,000 -79% 
Treatment & Distribution Utility B 47,579,000 15,818,000 -67% 
Treatment & Distribution Utility F 25,490,000 8,827,000 -65% 

Distribution Utility G 3,953,000 3,209,000 -19% 
Entire Utility Utility D 30,360,000 22,448,000 -26% 
Entire Utility Utility E 41,531,000 29,333,000 -29% 
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6.4 Water-Energy Nexus Evaluation 

 The data collected from the seven utilities were also used to test the water-energy 

nexus portion of the accounting tool.  The results of this analysis are presented in Table 

6.10.  The water consumed in generating electricity for the water utilities represented a 

small percentage (0.08%-0.14%) of the water produced by the water utility.  This 

produced net water production values almost identical to the total average flow of the 

water utility. 

Table 6.10 Results of the water-energy nexus evaluation. 

Water Consumption 
Total Average 

Flow Rate (MGD) 

Net Water 
Production 

(MGD) Utility gal/yr MGD 
% of 

Production 
Utility A 2,192,584 0.0060 0.14% 4.21 4.20 
Utility B 34,104,379 0.0934 0.11% 83.4 83.31 
Utility C 27,933,753 0.0765 0.10% 74.734 74.66 
Utility D 15,705,158 0.0430 0.08% 55.37 55.33 
Utility E 20,499,345 0.0561 0.09% 60.3 60.24 
Utility F 15,937,080 0.0436 0.13% 34 33.96 
Utility G 5,465,242 0.0150 0.09% 17.5 17.49 
 

6.5 Feedback for the GHG Emissions Accounting Tool 

 Overall, the accounting tool received a positive reception from the seven water 

utilities that tested it.  The program was the first tool of its kind that the utilities have 

seen.  In order to improve the ease of use, an instructions page was recommended to be 

added at the beginning of the program.  Another suggestion was to add references for the 

emission factors used in the program in order to validate that the program uses reputable 
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data.  The utilities also listed the chemicals used at their treatment plants that were not 

listed in the program, such as fluoride (sodium fluorosilicate and fluorosilicic acid), 

phosphate, powdered activated carbon, sulfuric acid, sodium chlorite, and sodium 

chloride. 
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CHAPTER SEVEN 
 

CONCLUSIONS AND RECOMMENDATIONS 

The important conclusions for each objective of this study were as follows: 

Main objective: Develop an accounting tool that will allow for water utilities to 

calculate their GHG emissions. 

 The accounting tool was created to calculate the GHG emissions of a water utility. 

It was designed to be flexible enough for use by a wide range of utility sizes, 

treatment processes, and locations in the United States. 

Sub-objective 1: Create a program to serve as the shell of the GHG emissions 

accounting tool. 

 A comprehensive literature review was conducted to compile all available data 

and equations relating to GHG emissions from water utilities. 

 The information gathered was used to develop a program, which contains all the 

necessary data input cues, formulas, and emission factors for water utilities to 

calculate their carbon inventory and footprint. 

Sub-objective 2: Develop energy use prediction equations for different portions of the 

water production process. 

 The survey data obtained to form the prediction equations had an average energy 

use of 3.1 kWh/1000 gal. 
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 The log10 transformation of the data was found to be the superior option compared 

to the SQRT transformation for all of the regression models formed because the 

SQRT transformation produced an uneven distribution and was not able to 

accurately model the upper range of electricity usage. 

 Two prediction equations were developed for the raw water collection phase, one 

for water utilities with purchased water flows and one for those without.  Both 

models used total average flow rate and raw water collection pumping hp as 

independent variables; while the model for utilities with purchased water flows 

also included that flow as an independent variable.  The regression model for 

utilities with purchased water flows has an R2 value of 0.87 while the model for 

those without has an R2 value of 0.79. 

 An accurate regression model for the treatment phase of water production could 

not be developed with the current data set.  In place of a regression model, 

literature data are used in the GHG emissions accounting tool to provide a 

prediction of electricity use during treatment. 

 A single regression model was developed for the finished water distribution phase 

of water production with an R2 value of 0.69.  This model included total average 

flow and finished water distribution pumping hp as the independent variables. 

 Most utilities are not equipped to accurately track the energy consumption for 

different parts of their process, which would be required for more reliable energy 

prediction equations to be developed, especially for the treatment phase. 
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Sub-objective 3: Include the water-energy nexus in the GHG emissions accounting 

tool. 

 A water utility is able to determine the water consumed as a result of generating 

the electricity required to power the utility as well as determine the net water 

production of the utility.  The program determines this information using the 

electricity entered in the program, the water production rate, and the zip code of 

the utility. 

Sub-objective 4: Test the program using real data at various water utilities. 

 Seven water utilities were visited to collect data and test the GHG emissions 

accounting tool. 

 The carbon inventories of the seven utilities averaged 1240 kg CO2-eq./MG. 

 Two of the seven utilities tested exceeded the EPA reporting rule threshold of 

25,000 metric tons of CO2-eq./yr. 

 Assuming an average emission rate of 1240 kg CO2-eq./MG, water utilities with 

flow rates greater than 55.2 MGD will have GHG emissions greater than the EPA 

reporting rule limit. 

 Using the national average emissions factors, the seven utilities have an average 

carbon inventory of 1310 kg CO2-eq./MG.  This average would entail utilities 

with flow rates greater than 52.2 MGD having emissions greater than the EPA 

reporting rule limit. 
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 When using the three highest and lowest GHG emitting EPA subregion emission 

factors, the seven utilities had carbon inventories that ranged from 550 to 2190 kg 

CO2-eq./MG.  The flow rate required to exceed the EPA reporting rule threshold 

subsequently ranged from 31.3 to 123.5 MGD. 

 The major source of GHG emissions for a utility with conventional treatment is 

pumping because the raw water collection and finished water distribution phases 

account for 75% or more of a utility’s carbon inventory. 

 The carbon footprints of the seven utilities compared favorably to the literature 

data in previous LCA studies. 

 Scope 2 emissions accounted for at least 80% of the carbon footprint for all seven 

of the utilities tested 

 The water consumed in generating electricity for each water utility was less than 

one percent of the total average flow rate at each corresponding utility. 

 Water utilities that tested the program also provided feedback on how to improve 

the tool itself, which included adding an instructions and references section. 

 

Recommendations for the further development of the GHG emissions accounting tool are 

as follows: 

 The GHG emissions accounting tool should be transitioned from its current form 

into a web-based program.  This would make the program more user friendly and 

accessible.  A web-based program would also provide an improved avenue to 
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gather data over the current method of surveying. The web-based program would 

simply have to ask the permission of the user to save their data for further study. 

 It is vital to keep the eGRID emissions factors up to date.  Any updated values 

published by the EPA need to be added to the program. 

 Literature data used to predict the treatment phase electricity usage need to be 

augmented to include more individual treatment steps.  The critical processes to 

add are those involved in dewatering and solids handling, for example: 

centrifuges, belt presses, sludge lagoons, etc. 

 Chemicals used during the treatment process that were not included in the first 

version of the accounting tool need to be researched for their associated GHG 

emissions and added to the program.  These include, but are not limited to, 

fluoride (sodium fluorosilicate and fluorosilicic acid), phosphate, powdered 

activated carbon, sulfuric acid, sodium chlorite, and sodium chloride. 

 If additional electricity usage data are obtained from the web-based program, the 

energy use prediction equations should be updated to include these additional data 

points.  The treatment phase in particular should be reevaluated to see if an 

accurate energy prediction equation can be developed using a larger data set. 

 To provide a more complete view of the water-energy nexus, the water consumed 

in producing the various fuels (gasoline, diesel, natural gas, etc.) used by water 

utilities should be added to the net water production function of the program. 
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Recommendations for future research are as follows: 

 Combining this program with a similar one designed for wastewater utilities, such 

as the program developed at Clemson University (Hicks, 2010) should be 

investigated.  This would provide a comprehensive tool for combined utilities and 

improve the assessment of shared assets such as administrative buildings and 

vehicle fleets. 

 A further investigation into the GHG emissions of water utilities should be 

undertaken.  This would prove easier to accomplish if a web-based version of this 

program was utilized to obtain a larger data set for the water utility characteristics 

and their GHG emissions.  One specific task in this investigation should be to 

search for common characteristics of water utilities with low GHG emissions in 

an effort to help other utilities achieve the goal of lowering their own emissions. 

 

Recommendations for water utilities are as follows: 

 Data tracking of current and future energy use should be improved.  Compiling 

the energy use data for all aspects of the water utility in one location would assist 

in any future energy investigations as well as calculating a GHG emissions 

baseline. 

 Improved energy accounting should be implemented when possible.  Additional 

electric and fuel meters would allow utilities to differentiate energy use for 

different phases of water production. 
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 Standardization of energy use reporting should be implemented.  The four phases 

used in this project (raw water collection, treatment, finished water distribution, 

and buildings/fleet/other) offer an appropriate breakdown of utility-wide energy 

use. 
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Appendix A 

Compiled Data for Electrical Generation GHG Emissions 

Table A.1: Life cycle GHG emissions for natural gas-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Natural Gas (combined cycle) 389 511 450 (Koch, 2000) 
Natural Gas (combined cycle) 422 499 461 (Gagnon, 2003) 
Natural Gas (combined cycle) 439 (World Energy Council, 2004)
Natural Gas (combined cycle) 433 (World Energy Council, 2004)
Natural Gas (combined cycle) 448 (World Energy Council, 2004)
Natural Gas (combined cycle) 421 (World Energy Council, 2004)
Natural Gas (combined cycle) 440 (World Energy Council, 2004)
Natural Gas (combined cycle) 407 (World Energy Council, 2004)
Natural Gas (combined cycle) 440 (World Energy Council, 2004)
Natural Gas (combined cycle) 411 (World Energy Council, 2004)
Natural Gas (combined cycle) 499 (World Energy Council, 2004)
Natural Gas (combined cycle) 469 (World Energy Council, 2004)

Natural Gas (combined cycle) 
  

443 
(L. Gagnon, Belanger, & 

Uchiyama, 2002) 
Natural Gas (combined cycle) 455 (Pacca & Horvath, 2002) 
Natural Gas (combined cycle) 400 780 590 (Streimikiene, 2010) 

Gas 362 (Krewitt, 1997) 
Gas 356 (UKSDC, 2006) 
Gas 469 (Meier, 2002) 
Gas 385 (UKDTI, 2006) 
Gas 450 (Vattenfall AB, 1999) 
Gas 400 (British Energy, 2005) 
Gas 410 (POST, 2006) 
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Table A.2: Life cycle GHG emissions for coal-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Coal 790 1182 986 (Koch, 2000) 
Coal 815 (Krewitt, 1997) 
Coal 891 (UKSDC, 2006) 
Coal 974 (Meier, 2002) 
Coal 990 (CRIEPI, 1995) 
Coal 755 (UKDTI, 2006) 
Coal 980 (Vattenfall AB, 1999) 
Coal 900 (British Energy, 2005) 
Coal 810 (POST, 2006) 
Coal 932 (World Energy Council, 2004) 
Coal 803 (World Energy Council, 2004) 
Coal 766 (World Energy Council, 2004) 
Coal 500 (World Energy Council, 2004) 
Coal 860 (World Energy Council, 2004) 
Coal 1085 (World Energy Council, 2004) 
Coal 980 (World Energy Council, 2004) 
Coal 834 (World Energy Council, 2004) 
Coal 1026 (World Energy Council, 2004) 
Coal 960 (World Energy Council, 2004) 
Coal 972 (World Energy Council, 2004) 
Coal 1075 (World Energy Council, 2004) 
Coal 1010 (World Energy Council, 2004) 
Coal 823 (World Energy Council, 2004) 
Coal 959 (World Energy Council, 2004) 
Coal 757 (World Energy Council, 2004) 
Coal 847 (World Energy Council, 2004) 
Coal 975 (Varun, Bhat, & Prakash, 2009) 
Coal 960 1050 1005 (L. Gagnon, et al., 2002) 
Coal 765 (Pacca & Horvath, 2002) 
Coal 750 1250 1000 (Streimikiene, 2010) 
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Table A.3: Life cycle GHG emissions for oil-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Oil 519 1190 855 (Dones, Heck, & Hirschberg, 2003) 
Oil 742 (Varun, et al., 2009) 
Oil 500 1200 850 (Streimikiene, 2010) 

Diesel 649 787 718 (Luc Gagnon, 2003) 
Diesel 778 (L. Gagnon, et al., 2002) 

Heavy Oil 841 999 920 (Gagnon, 2003) 
Heavy Oil 778 (L. Gagnon, et al., 2002) 

Heavy Fuel Oil 866 (World Energy Council, 2004) 
Heavy Fuel Oil 777 (World Energy Council, 2004) 
Heavy Fuel Oil 774 (World Energy Council, 2004) 
Heavy Fuel Oil 825 (World Energy Council, 2004) 
Heavy Fuel Oil 657 (World Energy Council, 2004) 

 

Table A.4: Life cycle GHG emissions for nuclear-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Nuclear 2 59 31 (Koch, 2000) 
Nuclear 8 11 10 (Dones, et al., 2003) 
Nuclear 6 16 11 (Gagnon, 2003) 
Nuclear 20 (Krewitt, 1997) 
Nuclear 16 (UKSDC, 2006) 
Nuclear 15 (Meier, 2002) 
Nuclear 21 (CRIEPI, 1995) 
Nuclear 11 22 17 (UKDTI, 2006) 
Nuclear 6 (Vattenfall AB, 1999) 
Nuclear 5 (British Energy, 2005) 
Nuclear 3 5 4 (POST, 2006) 
Nuclear 40 (World Energy Council, 2004) 
Nuclear 3 (World Energy Council, 2004) 
Nuclear 3 (World Energy Council, 2004) 
Nuclear 12 (World Energy Council, 2004) 
Nuclear 24.2 (Varun, et al., 2009) 
Nuclear 15 (L. Gagnon, et al., 2002) 
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Table A.5: Life cycle GHG emissions for hydroelectric-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Hydroelectric 2 48 25 (Koch, 2000) 
Hydroelectric 3 27 15 (Dones, et al., 2003) 
Hydroelectric 18 (CRIEPI, 1995) 
Hydroelectric 3 (Vattenfall AB, 1999) 
Hydroelectric 40 (Pacca & Horvath, 2002) 

Hydro with Reservoir 10 33 22 (Gagnon, 2003) 
Hydro with Reservoir 10 (POST, 2006) 
Hydro with Reservoir 8 15 12 (World Energy Council, 2004) 
Hydro with Reservoir 3.5 6.5 5 (World Energy Council, 2004) 
Hydro with Reservoir 10 19 15 (World Energy Council, 2004) 
Hydro with Reservoir 15 (L. Gagnon, et al., 2002) 
Hydro Run-of-River 3 4 3.5 (Gagnon, 2003) 
Hydro Run-of-River 2 (POST, 2006) 
Hydro Run-of-River 33 (World Energy Council, 2004) 
Hydro Run-of-River 5.1 (World Energy Council, 2004) 
Hydro Run-of-River 4 (World Energy Council, 2004) 
Hydro Run-of-River 2 (L. Gagnon, et al., 2002) 
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Table A.6: Life cycle GHG emissions for biomass-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Biomass Forestry Wastes Combustion 15 101 58 (Koch, 2000) 
Forest Waste Combustion 0 14 7.0 (Gagnon, 2003) 
Grass Direct Combustion 80 (POST, 2006) 

Large Scale Wood Chip Combustion 76.0 83.3 79.6 (Streimikiene, 2010) 

Biomass 
  

118 
(L. Gagnon, et al., 

2002) 

Integrated Gasification Combined Cycle
  

36 
(World Energy 
Council, 2004) 

Integrated Gasification Combined Cycle
  

17.7 
(World Energy 
Council, 2004) 

Integrated Gasification Combined Cycle
  

15.1 
(World Energy 
Council, 2004) 

Integrated Gasification Combined Cycle
  

49 
(World Energy 
Council, 2004) 

Wood Chip Gasification 25 (POST, 2006) 
Large Scale Wood Chip Gasification 21.6 29.0 25.3 (Streimikiene, 2010) 

Large Scale Biomass (wood chips) CHP 21.6 36.0 28.8 (Streimikiene, 2010) 
Small Scale Biomass (wood chips 

gasification) CHP 
10.8 21.6 16.2 (Streimikiene, 2010) 

Biogas Cogeneration 78 (Varun, et al., 2009) 
Wood Cogeneration 92 156 124 (Dones, et al., 2003) 
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Table A.7: Life cycle GHG emissions for wind-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Wind 14 21 18 (Dones, et al., 2003) 
Wind 9 20 15 (Gagnon, 2003) 
Wind 7 (Krewitt, 1997) 
Wind 14 (Meier, 2002) 
Wind 37 (CRIEPI, 1995) 
Wind 11 37 24 (UKDTI, 2006) 
Wind 6 (Vattenfall AB, 1999) 
Wind 4 5 5 (POST, 2006) 
Wind 12.2 (World Energy Council, 2004) 
Wind 14.5 (World Energy Council, 2004) 
Wind 22 (World Energy Council, 2004) 
Wind 8.4 (World Energy Council, 2004) 
Wind 8.2 (World Energy Council, 2004) 
Wind 10.3 (World Energy Council, 2004) 
Wind 9.1 (World Energy Council, 2004) 
Wind 7.4 (World Energy Council, 2004) 
Wind 12.4 (World Energy Council, 2004) 
Wind 9.1 (World Energy Council, 2004) 
Wind 16.5 (Varun, et al., 2009) 
Wind 10 (Varun, et al., 2009) 
Wind 11 (Varun, et al., 2009) 
Wind 9 (L. Gagnon, et al., 2002) 
Wind 10 (Pacca & Horvath, 2002) 
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Table A.8: Life cycle GHG emissions for solar-based electricity production. 

 GHG Emissions (g CO2-eq./kWh)  
Term Used Minimum Maximum Average Source 

Solar Photovoltaic 38 121 80 (Gagnon, 2003) 
Solar Photovoltaic 53 (Krewitt, 1997) 
Solar Photovoltaic 39 (Meier, 2002) 
Solar Photovoltaic 59 (CRIEPI, 1995) 
Solar Photovoltaic 50 (Vattenfall AB, 1999) 
Solar Photovoltaic 35 58 47 (POST, 2006) 
Solar Photovoltaic 104 (World Energy Council, 2004) 
Solar Photovoltaic 43 (World Energy Council, 2004) 
Solar Photovoltaic 51 (World Energy Council, 2004) 
Solar Photovoltaic 44 (World Energy Council, 2004) 
Solar Photovoltaic 45 (World Energy Council, 2004) 
Solar Photovoltaic 12.5 (World Energy Council, 2004) 
Solar Photovoltaic 21 45 33 (Fthenakis & Alsema, 2006) 
Solar Photovoltaic 27 59 43 (Fthenakis & Alsema, 2006) 

Solar Photovoltaic 
  

50 
(Sherwani, Usmani, & Varun, 

2010) 
Solar Photovoltaic 39 (Sherwani, et al., 2010) 
Solar Photovoltaic 34.3 (Sherwani, et al., 2010) 
Solar Photovoltaic 15.6 (Sherwani, et al., 2010) 
Solar Photovoltaic 60 (Sherwani, et al., 2010) 
Solar Photovoltaic 64.8 (Sherwani, et al., 2010) 
Solar Photovoltaic 44 (Sherwani, et al., 2010) 
Solar Photovoltaic 12 (Sherwani, et al., 2010) 
Solar Photovoltaic 53.4 (Sherwani, et al., 2010) 
Solar Photovoltaic 26.4 (Sherwani, et al., 2010) 
Solar Photovoltaic 72.4 (Sherwani, et al., 2010) 
Solar Photovoltaic 12.1 (Sherwani, et al., 2010) 
Solar Photovoltaic 9.4 (Sherwani, et al., 2010) 
Solar Photovoltaic 13 (L. Gagnon, et al., 2002) 
Solar Photovoltaic 100 (Pacca & Horvath, 2002) 
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Appendix B 

Supplemental Information for Chapter 4 

 

Table B.1: EPA subregion electricity emission factors [adapted from (USEPA, 2010)]. 

eGRID Subregion 
Acronym 

CO2 Emission 
Rate  

CH4 Emission 
Rate 

N2O Emission 
Rate 

 lb/MWh lb/MWh lb/MWh 
AKGD 1284.720 0.0271 0.0074 
AKMS 535.730 0.0227 0.0045 
AZNM 1252.610 0.0188 0.0166 
CAMX 681.010 0.0283 0.0062 
ERCT 1252.570 0.0178 0.0140 
FRCC 1220.110 0.0412 0.0153 
HIMS 1343.820 0.1352 0.0217 
HIOA 1620.760 0.0911 0.0209 
MROE 1692.320 0.0288 0.0291 
MROW 1771.520 0.0295 0.0300 
NEWE 827.950 0.0770 0.0152 
NWPP 858.790 0.0163 0.0136 
NYCW 704.800 0.0262 0.0034 
NYLI 1418.740 0.0905 0.0131 
NYUP 680.490 0.0174 0.0099 
RFCE 1059.320 0.0274 0.0170 
RFCM 1651.110 0.0326 0.0278 
RFCW 1551.520 0.0184 0.0259 
RMPA 2187.410 0.0267 0.0335 
SPNO 1798.710 0.0212 0.0292 
SPSO 1624.030 0.0245 0.0224 
SRMV 1004.100 0.0218 0.0112 
SRMW 1779.270 0.0206 0.0296 
SRSO 1495.470 0.0236 0.0246 
SRTV 1540.850 0.0199 0.0255 
SRVC 1118.410 0.0223 0.0191 
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Table B.2: United States national average electricity emission factors [adapted from 
(USEPA, 2010)]. 
 

CO2 Emission Rate CH4 Emission Rate N2O Emission Rate 
lb/MWh lb/MWh lb/MWh 
1299.53 0.02514 0.01974 

 

 
Table B.3: Average life cycle GHG emissions from various electricity production 
methods (data sources can be seen in Appendix A). 
 

Electricity Production Method Emissions Factor

 g CO2-eq./kWh 
Coal 901 

Natural Gas 438 
Oil 795 

Nuclear 15 
Hydroelectric 13 

Biomass 51 
Wind 13 
Solar 45 
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Table B.4: Fuel usage GHG emission factors for stationary combustion sources [adapted 
from (USEPA, 2008b)]. 
 

Emission Factor 

Fuel CO2 CH4 N2O 
kg/MMBtu kg/MMBtu kg/MMBtu 

Natural Gas 53.0567 0.0052709 0.0001054 
Propane 63.0667 0.0105419 0.0006325 

Liquid Propane 63.1620 0.0105419 0.0006325 
Diesel 73.1500 0.0105419 0.0006325 

Fuel Oil No. 1 73.1500 0.0105419 0.0006325 
Fuel Oil No. 2 73.1500 0.0105419 0.0006325 
Fuel Oil No. 4 73.1500 0.0105419 0.0006325 

Fuel Oil No. 5 & 6 78.7967 0.0105419 0.0006325 
Kerosene 72.3067 0.0105419 0.0006325 

Coal (anthracite) 103.6200 0.0105419 0.0015813 
Coal (bituminous) 93.4633 0.0105419 0.0015813 

Coke 113.6667 0.0105419 0.0015813 
Wood 93.8667 0.3162555 0.0042167 

 

Table B.5: GHG emission factors for potable water production specific direct emission 
sources [adapted from (Huxley, et al., 2009)]. 
 

Emission Factor 

Source CO2 CH4 N2O 

Ozone Generation - - 0.11 g N2O/m3 
GAC Regeneration [(44/12)*7.5%]/ton - - 

Reservoir Emissions 

-Boreal 1460 mg/m2/day 57.2 mg/m2/day 0.2 mg/m2/day 

-Temperate 525 mg/m2/day 6.7 mg/m2/day 0.0 mg/m2/day 

-Subtropical 525 mg/m2/day 6.7 mg/m2/day 0.0 mg/m2/day 

-Tropical 5470 mg/m2/day 136.1 mg/m2/day 218.8 mg/m2/day
Sludge Disposal 762 kg/ton 39 kg/ton - 
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Table B.6: GHG emission factors from chemical production [adapted from (Tripathi, 
2007)]. 
 

Chemical GHG Emissions
kg CO2-eq./MT 

Alum 276 
Ferric Chloride 77 

Ferrous Chloride 77 
Chlorine 780 

Sodium Hypochlorite 1065 
Lime 1264 

Polymers 2082 
Carbon Dioxide 346 

Oxygen 226 
Sodium Hydroxide 1376 

Ammonia 2400 
 

 
Table B.7: CO2 emission factors for mobile combustion sources [adapted from (USEPA, 
2008a)]. 
 

Fuel Emission Factors

kg CO2/gallon 
Gasoline 8.81 
Diesel 10.15 
E85 6.05 

Ethanol 5.56 
Biodiesel 9.46 
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Table B.8: CH4 and N2O emission factors for passenger cars [adapted from (USEPA, 
2008a)]. 
 

Fuel Model Year/ Catalytic Control
Emission factors 

N2O CH4 
g/mile g/mile 

Gasoline 1984-1993 0.0647 0.0704 
Gasoline 1994 0.056 0.0531 
Gasoline 1995 0.0473 0.0358 
Gasoline 1996 0.0426 0.0272 
Gasoline 1997 0.0422 0.0268 
Gasoline 1998 0.0393 0.0249 
Gasoline 1999 0.0337 0.0216 
Gasoline 2000 0.0273 0.0178 
Gasoline 2001 0.0158 0.011 
Gasoline 2002 0.0153 0.0107 
Gasoline 2003 0.0135 0.0114 
Gasoline 2004 0.0083 0.0145 
Gasoline 2005-present 0.0079 0.0147 
Diesel 1960-1982 0.0012 0.0006 
Diesel 1983-present 0.001 0.0005 
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Table B.9: CH4 and N2O emission factors for light-duty trucks [adapted from (USEPA, 
2008a)]. 
 

Fuel Model Year/ Catalytic Control

Emission factors 

N2O CH4 
g/mile g/mile 

Gasoline 1987-1993 0.1035 0.0813 
Gasoline 1994 0.0982 0.0646 
Gasoline 1995 0.0908 0.0517 
Gasoline 1996 0.0871 0.0452 
Gasoline 1997 0.0871 0.0452 
Gasoline 1998 0.0728 0.0391 
Gasoline 1999 0.0564 0.0321 
Gasoline 2000 0.0621 0.0346 
Gasoline 2001 0.0164 0.0151 
Gasoline 2002 0.0228 0.0178 
Gasoline 2003 0.0114 0.0155 
Gasoline 2004 0.0132 0.0152 
Gasoline 2005-present 0.0101 0.0157 
Diesel 1960-1982 0.0017 0.0011 
Diesel 1983-1995 0.0014 0.0009 
Diesel 1996-present 0.0015 0.001 

Ethanol All 0.067 0.055 
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Table B.10: CH4 and N2O emission factors for heavy-duty trucks [adapted from (USEPA, 
2008a)]. 
 

Fuel Model Year/ Catalytic Control

Emission factors 

N2O CH4 
g/mile g/mile 

Gasoline 1985-1986 0.0515 0.409 
Gasoline 1987 0.0849 0.3675 
Gasoline 1988-1989 0.0933 0.3492 
Gasoline 1990-1995 0.1142 0.3246 
Gasoline 1996 0.168 0.1278 
Gasoline 1997 0.1726 0.0924 
Gasoline 1998 0.1693 0.0641 
Gasoline 1999 0.1435 0.0578 
Gasoline 2000 0.1092 0.0493 
Gasoline 2001 0.1235 0.0528 
Gasoline 2002 0.1307 0.0546 
Gasoline 2003 0.124 0.0533 
Gasoline 2004 0.0285 0.0341 
Gasoline 2005-present 0.0177 0.0326 
Diesel 1960-present 0.0048 0.0051 

Ethanol All 0.175 0.197 
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Table B.11: Electrical grid make-up of the various EPA subregions [adapted from (USEPA, 2010)]. 
 

Electrical Grid Composition 

EPA 
Subregion Coal Oil Gas 

Other 
Fossils Biomass Hydroelectric Nuclear Wind

Solar 
PV Geothermal

AKGD 11.8% 10.4% 70.1% 0.0% 0.0% 7.7% 0.0% 0.0% 0.0% 0.0% 
AKMS 0.0% 32.2% 3.4% 0.0% 0.7% 63.6% 0.0% 0.1% 0.0% 0.0% 
AZNM 40.2% 0.1% 36.2% 0.0% 0.2% 5.9% 14.8% 0.4% 0.0% 2.1% 
CAMX 7.6% 1.0% 52.5% 0.9% 2.4% 12.1% 16.2% 2.5% 0.3% 4.4% 
ERCT 34.4% 0.4% 49.5% 0.9% 0.1% 0.3% 12.0% 2.4% 0.0% 0.0% 
FRCC 26.9% 9.2% 47.3% 0.6% 1.7% 0.0% 13.4% 0.0% 0.0% 0.0% 
HIMS 1.9% 76.9% 0.0% 0.0% 3.6% 2.9% 0.0% 7.4% 0.0% 7.2% 
HIOA 18.2% 77.4% 0.0% 2.5% 1.9% 0.0% 0.0% 0.0% 0.0% 0.0% 
MROE 66.6% 3.2% 7.9% 0.1% 3.4% 3.0% 15.6% 0.1% 0.0% 0.0% 
MROW 71.0% 0.5% 5.0% 0.2% 1.0% 3.5% 15.4% 3.4% 0.0% 0.0% 
NEWE 15.1% 4.2% 40.8% 1.5% 5.8% 4.5% 27.9% 0.1% 0.0% 0.0% 
NWPP 32.0% 0.2% 12.8% 0.3% 1.1% 48.4% 3.0% 1.9% 0.0% 0.3% 
NYCW 0.0% 5.0% 56.3% 0.4% 0.5% 0.0% 37.8% 0.0% 0.0% 0.0% 
NYLI 0.0% 31.4% 61.3% 3.4% 3.9% 0.0% 0.0% 0.0% 0.0% 0.0% 
NYUP 23.1% 2.2% 17.9% 0.4% 1.3% 26.4% 27.8% 0.9% 0.0% 0.0% 
RFCE 42.2% 1.1% 13.1% 1.1% 1.2% 0.9% 40.3% 0.2% 0.0% 0.0% 
RFCM 69.8% 0.7% 12.2% 0.6% 1.8% 0.0% 14.8% 0.0% 0.0% 0.0% 
RFCW 72.9% 0.3% 2.9% 0.6% 0.3% 0.6% 22.3% 0.1% 0.0% 0.0% 
RMPA 71.3% 0.1% 23.6% 0.0% 0.0% 2.9% 0.0% 2.0% 0.0% 0.0% 
SPNO 74.9% 0.3% 8.1% 0.0% 0.0% 0.1% 14.8% 1.6% 0.0% 0.0% 
SPSO 56.4% 0.2% 34.6% 0.3% 1.6% 4.4% 0.0% 2.4% 0.0% 0.0% 
SRMV 23.0% 1.6% 44.7% 1.3% 2.2% 1.4% 25.5% 0.0% 0.0% 0.0% 
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Table B.11 (continued): Electrical grid make-up of the various EPA subregions [adapted from (USEPA, 2010)]. 
 

Electrical Grid Composition 

EPA 
Subregion Coal Oil Gas 

Other 
Fossils Biomass Hydroelectric Nuclear Wind

Solar 
PV Geothermal

SRMW 80.8% 0.1% 4.4% 0.0% 0.1% 1.3% 13.4% 0.0% 0.0% 0.0% 
SRSO 63.5% 0.3% 15.1% 0.1% 2.9% 1.4% 16.6% 0.0% 0.0% 0.0% 
SRTV 66.1% 1.2% 7.2% 0.0% 0.9% 3.7% 20.8% 0.0% 0.0% 0.0% 
SRVC 51.1% 0.9% 6.7% 0.2% 2.0% 0.7% 38.4% 0.0% 0.0% 0.0% 
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Appendix C 

Clemson University Energy Use Assessment Survey 

 

WATER TREATMENT ENERGY ASSESSMENT SURVEY 

The data gathered in this survey will provide a much needed overview of the power 
demands of a water treatment plant. The compiled data will allow for electrical use 
comparisons between common treatment options as well as various plant sizes. The 
data will also be utilized to further study the sustainable operation of water 
treatment plants. Published literature has illustrated that the most important input 
to a water treatment plant when considering its environmental impact is energy use. 
Given this energy use and the source of electricity production, the greenhouse gas 
(GHG) emissions associated with a plant can be calculated. Further analysis will be 
undertaken to understand how various water treatment techniques and different 
energy grids affect the environmental impact of treating water. Future scenarios 
including a changing energy grid and possible carbon legislation will also be studied 
using the compiled energy data as a baseline. There is space provided in the energy 
use information section for you to provide any additional thoughts and 
uncharacteristic details about your process. Your participation in this survey is 
sincerely appreciated. 

 

**All data obtained from the survey will be kept anonymous** 

 

 

Contact Information 

Please enter your contact information: 
Name of Facility: ____________________________________________ 

PWS ID: ____________________________________________ 

Address: ____________________________________________ 

Phone: ____________________________________________ 

E-Mail: ____________________________________________ 
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Name of Individual Completing the Survey: 
____________________________________________ 

Age of WTP: ____________________________________________ 

Estimated Age of Distribution System: 
____________________________________________ 

WTP Website: ____________________________________________ 

 

Basic WTP Information 

1.) Size of your WTP? (MGD) 
____________________________________________  

2.) Approximate number of people serviced? 
____________________________________________  

3.) Please list your daily production (MGD) 
Average Maximum Design

Ground ___  ___  ___  
Surface & 
GWUDI 

___  ___  ___  

Purchased ___  ___  ___  

 

Please indicate each treatment process / chemical that is used in your water system 
below 

4.) Disinfection 
[ ] Cl gas  [ ] Hypo  [ ] Ozone  [ ] UV  [ ] Other 

If you selected other, please explain 
____________________________________________  

Clarification 
[ ] Gravity  [ ] Up-flow  [ ] DAF 

Residuals Management 
[ ] None  [ ] Non-Mechanical  [ ] Mechanical 
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Number of processes 

Other/Miscellaneous 
[ ] Aeration with Blowers  [ ] Softening/Ion Exchange  [ ] Reservoir Aeration 

[ ] Rapid Mix  [ ] Flocculation  [ ] Backwash System 

Is there any other treatment processes or chemicals used in your system that was 
not listed above? Please explain 
____________________________________________  

____________________________________________  

____________________________________________  

____________________________________________  

 

Objectives & Preliminary Energy Information 

5.) Quantity of chemicals used: 
Quantity Units

Chlorine ___  ___  
Ammonia ___  ___  
Hypochlorite ___  ___  
Ozone ___  ___  
Potassium 
Permanganate 

___  ___  

Fluoride ___  ___  
Lime ___  ___  
Soda Ash ___  ___  
Coagulent ___  ___  
Coagulent ___  ___  
Coagulent ___  ___  
Other ___  ___  
Other ___  ___  
Other ___  ___  

What Coagulant(s)? 
____________________________________________  
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If you selected other, please explain: 

6.) What are your distribution/treatment objectives 
[ ] Disinfection  [ ] Particulate  [ ] Metals  [ ] Taste/Odor  [ ] Hardness  [ ] TOC 

[ ] Contaminate(Organic/Inorganic/Radionuclide)  [ ] Other 

If you selected other, please explain 
____________________________________________  

7.) How many engine driven pumps do you use? 
____________________________________________  

8.) How many Variable Frequency Drive (VFDs) pump controllers do you have? 
____________________________________________  

9.) Does your energy provider offer renewable energy? 
( ) Yes  ( ) No 

If yes, to what extent do you participate in the program? 
____________________________________________  

____________________________________________  

____________________________________________  

____________________________________________  

10.) Have you ever participated in an energy audit? 
( ) Yes  ( ) No 

 If yes, what agency/consulting firm conducted the survey? 
____________________________________________  

11.) Have you had any upgrades (i.e. equipment, software, employee 
programs/training) in the last 5 years towards conserving energy? 
( ) Yes  ( ) No 

Please explain 
____________________________________________  

____________________________________________  

____________________________________________  

____________________________________________  
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12.) How much of a priority is energy conservation for the plant 
(1 being no priority, 10 being the most priority) 
( ) 1  ( ) 2  ( ) 3  ( ) 4  ( ) 5  ( ) 6  ( ) 7  ( ) 8  ( ) 9  ( ) 10 

 

Energy Use Information 

The following section includes an energy use table for the years of 2008 and 2009 to 
be filled in. We ask that you include your monthly energy use along with your 
monthly flow (if available) in the units of your choosing. Below is space for you to 
describe any special considerations that you plant may operate under or any other 
additional comments you feel may be of interest to the survey. Some suggested areas 
of comment are: what if any seasonal variation does your plant deal with, does your 
plant operate as a wholesaler or a distributor, and is your energy supplied through 
bulk pricing or unit pricing? 
____________________________________________  

____________________________________________  

____________________________________________  

____________________________________________  

13.) Does your energy consumption include raw water pumping? 
( ) Yes  ( ) No 

If Yes, how far is your water pumped? 
____________________________________________  

Does your energy consumption include distribution? 
( ) Yes  ( ) No 

If Yes, how far is your distribution reach? 
____________________________________________  

14.) What type of energy do you use? 
[ ] Electricity  [ ] Natural Gas  [ ] Fuel Oil  [ ] Propane  [ ] Other 

If you selected other, explain: 
____________________________________________  

____________________________________________  

____________________________________________  

____________________________________________  
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How much of the selected energies do you use? 

ELECTRICAL USE SUMMARY - 2008 & 2009 
* Flow units to be in MGD 
* All electrical units required for Electric Use is kWh and Demand is kW 

 
Flow 

Raw 
Water 
Supply 

(Pumpin
g) - 

Electric 
Use 

Raw 
Water 
Supply 

(Pumpin
g) - 

Demand 

Treatme
nt 

Facility - 
Electric 

Use 

Treatme
nt 

Facility - 
Demand 

Distributi
on System 
- Electric 

Use 

Distributi
on System 
- Demand 

January
-08 

___  ___  ___  ___  ___  ___  ___  

Februar
y-08 

___  ___  ___  ___  ___  ___  ___  

March-
08 

___  ___  ___  ___  ___  ___  ___  

April-
08 

___  ___  ___  ___  ___  ___  ___  

May-08 ___  ___  ___  ___  ___  ___  ___  
June-08 ___  ___  ___  ___  ___  ___  ___  
July-08 ___  ___  ___  ___  ___  ___  ___  
August-
08 

___  ___  ___  ___  ___  ___  ___  

Septem
ber-08 

___  ___  ___  ___  ___  ___  ___  

October
-08 

___  ___  ___  ___  ___  ___  ___  

Novem
ber-08 

___  ___  ___  ___  ___  ___  ___  

Decem
ber-08 

___  ___  ___  ___  ___  ___  ___  

January
-09 

___  ___  ___  ___  ___  ___  ___  

Februar
y-09 

___  ___  ___  ___  ___  ___  ___  

March-
09 

___  ___  ___  ___  ___  ___  ___  

April-
09 

___  ___  ___  ___  ___  ___  ___  

May-09 ___  ___  ___  ___  ___  ___  ___  
June-09 ___  ___  ___  ___  ___  ___  ___  
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July-09 ___  ___  ___  ___  ___  ___  ___  
August-
09 

___  ___  ___  ___  ___  ___  ___  

Septem
ber-09 

___  ___  ___  ___  ___  ___  ___  

October
-09 

___  ___  ___  ___  ___  ___  ___  

Novem
ber-09 

___  ___  ___  ___  ___  ___  ___  

Decem
ber-09 

___  ___  ___  ___  ___  ___  ___  

 

 

Thank You! 

Thank you for taking our survey. Your response is extremely appreciated and will 
be used towards beneficial research at Clemson University to allow water treatment 
utilities to increase their sustainability to the environment. If you have any questions 
or comments on the survey, email Clemson.WTPSurvey@gmail.com. 
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Appendix D 

Supplemental Information for Chapter 5 

 

Table D.1: Survey data set used to form the raw water collection energy prediction 
equation. 
 

Plant 
ID 

Average 
Ground 
Water 
Flow 

Average 
Surface 
Water 
Flow 

Average 
Purchased 

Water 
Flow 

Total 
Average 

Flow 

Average 
Well 
Depth 

Source 
Water 

Pumping 
HP 

Collection 
Energy 

Use 
kGD kGD kGD kGD ft hp kWh/yr 

AL001 0 1920 0 1920 0 75 280640 
AL003 3800 0 0 3800 260 1430 2157200 
AL004 0 5370 0 5370 0 1200 1054200 
AL006 0 3000 0 3000 0 400 1489320 
AR002 57850 0 0 57850 10550 17080000 
AR003 1300 0 0 1300 500 405 721344 
AZ001 10000 0 0 10000 650 2115 4767795 
AZ002 980 0 0 980 700 300 310280 
CA007 3500 0 2500 6000 100 285 2700000 
CA010 1700 0 0 1700 450 159400 
CA011 2650 0 3790 6440 1117 375 29796 
CA015 3000 0 0 3000 340 300 750920 
CA016 8800 0 9600 18400 580 3050 6994464 
CA017 3300 0 3700 7000 585 350 1407869 
CA018 28510 0 22680 51190 1000 7700 15351439 
CA020 0 25000 3000 28000 0 3550 1092341 
CA021 8960 0 0 8960 871 2750 9393697 
CA022 30800 7600 36900 75300 783 10000 23782000 
CA023 4200 0 18800 23000 0 1044900 
CA026 3000 1000 0 4000 500 550 1597265 
CA028 17600 0 0 17600 566 3980 15090982 
CA030 460 6540 205000 212000 440 600 5977300 
CA031 4600 12700 6900 24200 800 190 4501000 
CA035 0 0 4000 4000 500 490 934277 
CA040 340 10830 0 11170 200 1200 4069114 
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Table D.1 (continued): Survey data set used to form the raw water collection energy 
prediction equation. 
 

Plant 
ID 

Average 
Ground 
Water 
Flow 

Average 
Surface 
Water 
Flow 

Average 
Purchased 

Water 
Flow 

Total 
Average 

Flow 

Average 
Well 
Depth 

Source 
Water 

Pumping 
HP 

Collection 
Energy 

Use 
kGD kGD kGD kGD ft hp kWh/yr 

CA041 13910 28340 0 42250 200 4740 10988819 
CA045 1000 0 0 1000 300 270 8 
CA046 3600 2100 7500 13200 420 675 35700 
CT002 1750 0 0 1750 94 330 968292 
IA007 5810 0 0 5810 110 745 1700740 
IL002 0 568000 0 568000 0 11000 39105499 
IL003 0 338600 0 338600 0 6400 23310611 
IL005 10800 8200 0 19000 1350 5350 15149532 
IL006 6000 0 0 6000 110 2000 1942456 
IL011 0 22000 0 22000 0 725 9400400 
IL012 500 0 2160 2660 1500 250 300000 
KS001 0 2190 0 2190 40 190 381440 
KS002 0 4340 0 4340 70 825 412399 
LA003 50300 0 0 50300 1800 9500 31561400 
LA007 1200 0 0 1200 2000 555 1204524 
MD001 500 2200 0 2700 200 180 81865 
MD002 4730 0 0 4730 375 60 152979 
MN001 9900 0 2700 12600 450 975 3437660 
MN002 2100 0 0 2100 400 475 975000 
MO002 29000 0 0 29000 108 2560 3885039 
MO003 2650 0 0 2650 130 330 2456575 
MO005 1870 10670 0 12540 1516 1450 7569260 
MO007 2860 28380 0 31240 1200 12550 12155143 
NC005 0 43200 0 43200 0 8835 28765720 
NC006 0 2990 0 2990 0 600 1225328 
NC009 2640 0 0 2640 196 580 956434 
NC012 6450 0 0 6450 593 1795 5431621 
NC013 0 9770 0 9770 0 600 7542773 
NE001 27900 10800 0 38700 84 5095 9041046 
OH004 18700 0 0 18700 84 950 3780667 
OH007 0 2600 0 2600 0 300 514299 
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Table D.1 (continued): Survey data set used to form the raw water collection energy 
prediction equation. 
 

Plant 
ID 

Average 
Ground 
Water 
Flow 

Average 
Surface 
Water 
Flow 

Average 
Purchased 

Water 
Flow 

Total 
Average 

Flow 

Average 
Well 
Depth 

Source 
Water 

Pumping 
HP 

Production 
Energy 

Use 
kGD kGD kGD kGD ft hp kWh/yr 

OK003 0 3900 0 3900 0 0 821100 
OR003 2900 99200 0 102100 383.4 6940 5495179 
PA001 700 0 0 700 400 195 583404 
PA003 4890 450 0 5340 250 2750 2400000 
PA004 0 2730 0 2730 0 50 1586560 
PA006 0 3250 0 3250 350 0 22499 
PA007 0 36600 0 36600 0 1050 31823059 
PA008 0 42100 0 42100 0 7600 51559017 
PA010 0 6500 20 6520 0 600 7692307 
PA011 0 4080 0 4080 0 150 528290 
PA012 0 27800 0 27800 0 2300 16495421 
SD001 6000 6000 0 12000 1500 2330 6741530 
TN001 0 1680 29900 31580 0 100 482800 
TX003 0 4080 0 4080 0 600 1453092 
UT002 4500 0 0 4500 500 1395 2457745 
UT003 12220 33890 37800 83910 385 3805 6605123 
VA005 0 142000 0 142000 0 14000 150000000
VT003 0 1580 0 1580 0 100 745920 
WA002 4010 3650 0 7660 361.13 430 2451546 
WA003 10100 0 0 10100 375 4950 10161720 
WA005 5300 0 0 5300 337 1865 4223996 
WA006 7000 0 0 7000 250 2327 5067505 
WA007 1530 0 0 1530 234 700 859300 
WI002 0 4000 0 4000 0 1100 2152320 
WI003 2120 0 0 2120 65 597.5 1117100 
WY001 0 2700 0 2700 0 0 56080 
NY006 1000 0 0 1000 260800 
NY009 0 2500 0 2500 0 2836 
NY016 2500 0 0 2500 2343652 
NY024 120 0 0 120 98227 
NY047 500 0 0 500 32664 
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Table D.1 (continued): Survey data set used to form the raw water collection energy 
prediction equation. 
 

Plant 
ID 

Average 
Ground 
Water 
Flow 

Average 
Surface 
Water 
Flow 

Average 
Purchased 

Water 
Flow 

Total 
Average 

Flow 

Average 
Well 
Depth 

Source 
Water 

Pumping 
HP 

Production 
Energy 

Use 
kGD kGD kGD kGD ft hp kWh/yr 

NY055 117 0 0 117 90705 
NY069 0 5000 0 5000 0 41441 
NY082 400 0 0 400 107507 
NY092 0 17500 24000 41500 0 69552 
NY095 800 800 0 1600 536624 
NY097 150 0 0 150 597841 
NY115 17000 0 0 17000 2678 
NY133 0 309 0 309 0 187200 
NY153 200 1300 0 1500 531920 
NY168 70 0 0 70 33177 
NY170 190 0 0 190 135569 
CU03 0 80000 0 80000 0 3917263 
CU04 26400 16000 0 42400 4895400 
CU06 11900 0 0 11900 280 785 3641764 
CU08 0 500 47 547 0 150 347040 
CU10 0 7000 0 7000 0 579000 
CU13 0 28000 0 28000 0 1714895 
CU18 0 120000 0 120000 0 11000 20910035 
CU19 17000 0 0 17000 123 1500 3367443 
CU24 0 19500 0 19500 0 675 957400 
CU25 0 13000 0 13000 0 3445422 
CU31 2900 12000 0 14900 95 1900 3571680 
CU32 0 40000 0 40000 0 17477350 
CU34 0 7900 0 7900 0 2650 2629900 
CU35 0 19500 0 19500 0 2064191 
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Table D.2: Part 1 of the survey data set used to form the treatment process energy 
prediction equation, including the various flow rates and electricity use information. 
 

Plant ID 

Average 
Ground 
Water 
Flow 

Average 
Surface 
Water 
Flow 

Average 
Purchased 

Water 
Flow 

Total 
Average 

Flow 
Treatment 

Energy Use 
kGD kGD kGD kGD kWh/yr 

AL001 0 1920 0 1920 253920 
AL003 3800 0 0 3800 124650 
AL006 0 3000 0 3000 810920 
AR002 57850 0 0 57850 7820000 
AR003 1300 0 0 1300 600538 
CA018 28510 0 22680 51190 8723340 
CA020 0 25000 3000 28000 1468240 
CA030 460 6540 205000 212000 962166 
CA031 4600 12700 6900 24200 1814000 
CA040 340 10830 0 11170 1434240 
CA041 13910 28340 0 42250 539360 
IA007 5810 0 0 5810 656040 
IL006 6000 0 0 6000 1452024 
KS001 0 2190 0 2190 888000 
KS002 0 4340 0 4340 278976 
MD001 500 2200 0 2700 2404200 
MD002 4730 0 0 4730 316413 
MN001 9900 0 2700 12600 971242 
MO002 29000 0 0 29000 1173320 
MO005 1870 10670 0 12540 169599 
MO007 2860 28380 0 31240 21274887 
NC006 0 2990 0 2990 872480 
NC009 2640 0 0 2640 170240 
NC012 6450 0 0 6450 1782420 
NE001 27900 10800 0 38700 14326997 
OH007 0 2600 0 2600 1610400 
PA003 4890 450 0 5340 1500000 
PA006 0 3250 0 3250 281074 
PA010 0 6500 20 6520 1923076 
PA011 0 4080 0 4080 176096 
TN001 0 1680 29900 31580 1036800 
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Table D.2 (continued): Part 1 of the survey data set used to form the treatment process 
energy prediction equation, including the various flow rates and electricity use 
information. 
 

Plant ID 

Average 
Ground 
Water 
Flow 

Average 
Surface 
Water 
Flow 

Average 
Purchased 

Water 
Flow 

Total 
Average 

Flow 

Treatment 
Energy 

Use 
kGD kGD kGD kGD kWh/yr 

TX003 0 4080 0 4080 1724448 
UT003 12220 33890 37800 83910 1769992 
WI002 0 4000 0 4000 1177440 
WI003 2120 0 0 2120 371725 
WY001 0 2700 0 2700 569400 
NY069 0 5000 0 5000 211360 
NY095 800 800 0 1600 85658 
NY115 17000 0 0 17000 1057685 
NY133 0 309 0 309 69960 
NY153 200 1300 0 1500 169854 
CU04 26400 16000 0 42400 4895400 
CU06 11900 0 0 11900 8282760 
CU08 0 500 47 547 287350 
CU10 0 7000 0 7000 3205367 
CU13 0 28000 0 28000 12779191 
CU18 0 120000 0 120000 21506910 
CU19 17000 0 0 17000 2722638 
CU24 0 19500 0 19500 2374500 
CU25 0 13000 0 13000 1470022 
CU31 2900 12000 0 14900 7392800 
CU32 0 40000 0 40000 6257952 
CU34 0 7900 0 7900 882463 
CU35 0 19500 0 19500 14639786 
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Table D.3: Part 2 of the survey data set used to form the treatment process energy prediction equation, including the treatment 
processes used at the water utility. 
 

Plant ID 
Conven-

tional 
Direct 

Filtration 

Slow 
Sand 
Filtra-
tion Aeration 

Pressure 
Filtration 

Soft-
ening DAF 

Oz-
one 

U
V 

Membrane 
Filtration 

Nanofiltra-
tion RO 

AL001 1 0 0 0 0 0 0 0 0 0 0 0 
AL003 1 0 0 1 0 0 0 0 0 0 0 0 
AL006 1 0 0 0 0 0 0 0 0 0 0 0 
AR002 1 0 0 0 0 0 0 0 0 0 0 0 
AR003 0 1 0 1 1 0 0 0 0 0 0 0 
CA018 0 0 0 0 0 0 0 0 0 0 1 0 
CA020 1 0 0 0 0 0 0 0 0 0 0 0 
CA030 1 0 0 0 0 0 0 0 0 0 0 0 
CA031 1 0 0 0 0 0 0 0 0 0 0 1 
CA040 1 0 0 1 1 0 0 0 0 0 0 0 
CA041 0 1 0 0 0 0 0 0 0 0 0 0 
IA007 1 0 0 0 0 1 0 0 0 0 0 0 
IL006 0 0 1 0 0 0 0 0 0 0 0 0 
KS001 1 0 0 0 0 1 0 0 0 0 0 0 
KS002 1 0 0 0 0 1 0 0 0 0 0 0 
MD001 1 0 0 0 1 0 0 0 0 0 0 0 
MD002 1 0 0 1 1 0 0 0 0 0 0 0 
MN001 1 0 0 0 0 1 0 0 0 0 0 0 
MO002 1 0 0 0 0 1 0 0 0 0 0 0 
MO005 1 0 0 0 0 0 0 0 0 0 0 0 
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Table D.3 (continued): Part 2 of the survey data set used to form the treatment process energy prediction equation, including 
the treatment processes used at the water utility. 
 

Plant ID 
Conven-

tional 
Direct 

Filtration 

Slow 
Sand 
Filtra-
tion Aeration 

Pressure 
Filtration 

Soft-
ening DAF 

Oz-
one 

U
V 

Membrane 
Filtration 

Nanofiltra-
tion RO 

MO007 1 0 0 0 0 0 0 0 0 0 0 0 
NC006 1 0 0 0 0 0 0 0 0 0 0 0 
NC009 1 0 0 1 0 0 0 0 0 0 0 0 
NC012 0 1 0 1 1 1 0 0 0 0 0 0 
NE001 0 1 0 0 0 0 0 1 0 0 0 0 
OH007 1 0 0 0 0 1 0 0 0 0 0 0 
PA003 1 0 0 0 0 0 0 0 0 0 0 0 
PA006 1 0 0 0 0 0 0 1 0 0 0 0 
PA010 1 0 0 0 0 0 0 0 0 0 0 0 
PA011 1 0 0 0 0 0 0 0 0 0 0 0 
TN001 0 0 1 0 0 0 0 0 0 0 0 0 
TX003 1 0 0 0 0 0 0 0 0 0 0 0 
UT003 1 0 0 0 0 0 0 0 0 0 0 0 
WI002 0 1 0 0 0 0 0 0 1 0 0 0 
WI003 0 0 1 1 0 0 0 0 0 0 0 0 
WY001 1 0 0 0 0 0 0 0 0 0 0 0 
NY069 0 1 0 0 0 0 0 0 0 0 0 0 
NY095 1 0 0 1 0 0 0 0 0 0 0 0 
NY115 1 0 0 0 0 0 0 0 0 0 0 0 
NY133 0 1 0 0 0 0 0 0 0 0 0 0 
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Table D.3 (continued): Part 2 of the survey data set used to form the treatment process energy prediction equation, including 
the treatment processes used at the water utility. 
 

Plant ID 
Conven-

tional 
Direct 

Filtration 

Slow 
Sand 
Filtra-
tion Aeration 

Pressure 
Filtration 

Soft-
ening DAF 

Oz-
one 

U
V 

Membrane 
Filtration 

Nanofiltra-
tion RO 

NY153 1 0 0 1 0 0 0 0 0 0 0 0 
CU04 1 0 0 0 0 0 0 1 0 0 0 0 
CU06 1 0 0 0 0 1 0 1 0 0 0 0 
CU08 0 1 0 0 0 0 0 0 0 0 0 0 
CU10 1 0 0 1 0 1 0 0 0 0 0 0 
CU13 1 0 0 0 0 0 0 0 0 0 0 0 
CU18 1 0 0 0 0 0 0 0 0 0 0 0 
CU19 0 1 0 0 0 1 0 0 0 0 0 0 
CU24 1 0 0 0 0 0 0 0 0 0 0 0 
CU25 0 0 0 0 0 0 0 0 0 1 0 0 
CU31 1 0 0 0 0 1 0 1 0 0 0 0 
CU32 1 0 0 0 0 0 0 0 0 0 0 0 
CU34 1 0 0 0 0 0 0 0 0 0 0 0 
CU35 1 0 0 0 0 0 0 0 0 0 0 0 
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Table D.4: Survey data set used to form the finished water distribution energy prediction 
equation. 
 

Plant 
ID 

Total 
Average 

Flow 

Length 
of Water 

Mains 

Distribution 
Pumping 

HP 

Average 
Distribution 

Pressure 
Elevation 
Difference 

Distribution 
Energy Use 

MGD mi hp psi ft kWh/yr 
AL001 1.92 101 320 61 140 906054 
AL003 3.8 210 675 100 266 2450293 
AL004 5.37 216 100 60 125 200600 
AL006 3 200 20 60 45 13391 
AR002 57.85 2200 8000 100 460 8776000 
AR003 1.3 275 300 70 260 44748 
AZ001 10 300 2702.5 55 900 1662389 
AZ002 0.98 30 230 65 100 566720 
CA002 5.5 110 2285 0 692 983560 
CA004 7.75 70 1000 80 0 586000 
CA007 6 88 500 120 1800 3200000 
CA010 1.7 12.1 95 58 0 40440 
CA012 3.68 130 405 80 250 1350869 
CA014 2.9 48 225 58 200 638570 
CA015 3 180 2325 62 480 188602 
CA016 18.4 350 4100 74 78 57180 
CA017 7 100 295 70 183 1259166 
CA018 51.19 1078 4800 60 1462 15602396 
CA019 6 100 220 50 360 142140 
CA020 28 400 680 50 490 111941 
CA022 75.3 800 18000 90 1545 23434000 
CA029 16.9 324 3160 125 1300 2794369 
CA030 212 3317 6900 60 870 23909199 
CA031 24.2 390 2045 60 495 2242000 
CA033 5.5 160 790 50 610 971359 
CA035 4 100 1165 90 960 1265101 
CA036 11.4 250 100 75 550 111211 
CA037 16 309.19 2810 122 1396 1549247 
CA038 5 52 0 85 51 74455 
CA039 15 269 2900 80 800 4968982 
CA040 11.17 262 950 85 1014 1443194 
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Table D.4 (continued): Survey data set used to form the finished water distribution 
energy prediction equation. 
 

Plant 
ID 

Total 
Average 

Flow 

Length 
of Water 

Mains 

Distribution 
Pumping 

HP 

Average 
Distribution 

Pressure 
Elevation 
Difference 

Distribution 
Energy Use 

MGD mi hp psi ft kWh/yr 
CA041 42.25 467 2005 75 0 1521450 
CA042 4.54 89.24 330 58 -5 15307 
CO003 17 450 3500 65 307 1050000 
CO007 4.65 144 220 75 628 584200 
CO009 21.8 524 600 81 377 794769 
CO010 23.6 538 10300 70 500 14628500 
CT002 1.75 75 30 80 320 111686 
FL003 66.98 2000 3275 50 80 9811701 
GA001 28.8 1100 2150 65 0 7342000 
IA002 4.26 150 150 50 195.06 818240 
IA007 5.81 220 16000 75 180 2258320 
IL002 568 4240 22764 35 85 118147638 
IL003 338.6 4240 22764 35 85 118147638 
IL005 19 600 5150 65 80 5570400 
IL006 6 210 1100 55 4 5907 
IL010 3.81 200 350 60 46 293760 
IL012 2.66 170 250 55 50 100000 
KS002 4.34 180 1375 90 330 521564 
LA003 50.3 1490.62 1055 65 37 240940 
LA007 1.2 260 40 60 80 81600 
MD001 2.7 119 800 55 432 133582 
MD002 4.73 125 500 44 10 6963 
MI004 13.2 221.5 665 75 127 569109 
MI006 8 201 200 52 36 109020 
MI007 2 180 1005 62 100 1139906 
MN001 12.6 488 2455 68 270 3194091 
MO002 29 722 1035 85 320 25637367 
MO003 2.65 87 725 60 140 683136 
MO005 12.54 430 545 65 276 1622478 
MO007 31.24 1126 1120 60 277 551608 
MT001 11.23 290 6600 73 370 1097700 



 146

Table D.4 (continued): Survey data set used to form the finished water distribution 
energy prediction equation. 
 

Plant 
ID 

Total 
Average 

Flow 

Length 
of Water 

Mains 

Distribution 
Pumping 

HP 

Average 
Distribution 

Pressure 
Elevation 
Difference 

Distribution 
Energy Use 

MGD mi hp psi ft kWh/yr 
NC004 0.7 150 50 50 338 1851246 
NC005 43.2 1900 15630 80 250 8743330 
NC007 1.85 350 850 75 390 369983 
NC009 2.64 172 275 78 45 108250 
NC010 2.59 120 625 68 86 248255578 
NC012 6.45 910 1925 70 38 149843 
NE001 38.7 1131.9 9850 65 310 21205900 
NH001 1.99 116 284 60 390 195505 
OH007 2.6 108 385 65 109 574296 
OK001 98.23 2325.2 1625 70 310 2021846 
OR002 5 180 1585 65 660 813640 
OR003 102.1 1957 14668 76 1263 16860771 
PA003 5.34 215 600 55 240 370000 
PA004 2.73 68 420 72 455 368462 
PA006 3.25 200 20 75 544 24183 
PA010 6.52 320 500 100 800 2307692 
PA011 4.08 106 625 80 553 1721254 
PA012 27.8 685 2025 74 672 6969549 
PA014 0.75 61 200 50 170 1044824 
SD001 12 359 800 60 588 2393775 
TN001 31.58 1000 152.5 85 582 151.54 
TX008 130.5 3036 0 72 705 28536936 
UT003 83.91 1376.21 15575 110 1562 10899986 
VA004 7.05 320 1275 85 260 1182629 
VA005 142 3154 3000 80 340 50000000 
VT003 1.58 76 0 150 610 21000 
WA002 7.66 300 994 50 650 1397240 
WA003 10.1 600 700 55 0 1936510 
WA005 5.3 267 770 45 650 1346680 
WI001 131 1960 44230 73 231.2 53183166 
WI003 2.12 135 875 70 150 535815 



 147

Table D.4 (continued): Survey data set used to form the finished water distribution 
energy prediction equation. 
 

Plant 
ID 

Total 
Average 

Flow 

Length 
of Water 

Mains 

Distribution 
Pumping 

HP 

Average 
Distribution 

Pressure 
Elevation 
Difference 

Distribution 
Energy Use 

MGD mi hp psi ft kWh/yr 
WY001 2.7 0 0 0 1431 29688 
NY009 2.5 0 0 76130 
NY011 1.7 50 70 188 
NY025 0.21 9 40 19000 
NY036 1.75 140 100 489300 
NY065 2.9 76 100 52992 
NY069 5 80 75 1005696 
NY089 0.5 25.5 70 17591 
NY102 1.7 500 112 648000 
NY111 0.7 13 55 12612 
NY115 17 155 100 2144441 
NY116 0.7 13 55.6 12612 
NY133 0.309 19 82 35616 
NY151 1.225 40 70 54677 
NY153 1.5 72 75 95640 
CU06 11.9 9 2300 65 639267 
CU07 4.2 65 985575 
CU10 7 273800 
CU13 28 15 1275362 
CU18 120 3000 49000 45 550 91646984 
CU25 13 200 5348823 
CU27 4 5 1450 50 100 927980 
CU31 14.9 10 2875 55 637 923706 
CU34 7.9 1650 83 143 2954333 
CU35 19.5 4707851 
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Appendix E 

SAS Program Codes for Energy Prediction Equations 

 

E.1 SAS Program Code for Raw Water Collection Energy Prediction Equation for 
Utilities without Purchased Water Flow 

 

PROC IMPORT OUT= WORK.ONE  
            DATAFILE= "C:\Johnston\RawWaterCollectionSAS_NoPurchased.xls"  
            DBMS=XLS REPLACE; 
     GETNAMES=YES; 
RUN; 
PROC PRINT; 
RUN; 
data one;SET ONE; 
COLLECTION=X7; 
COLLECTION2=COLLECTION**2;LCOLLECTION=LOG10(COLLECTION);SCOL
LECTION=SQRT(COLLECTION); 
FLOW=X4;FLOW2=FLOW**2;SFLOW=SQRT(FLOW);LFLOW=LOG10(X4); 
X1_2=X1**2;LX1=LOG10(X1+1);SX1=SQRT(X1); 
X2_2=X2**2;LX2=LOG10(X2+1);SX2=SQRT(X2); 
X3_2=X3**2;LX3=LOG10(X3+1);SX3=SQRT(X3); 
X5_2=X5**2;LX5=LOG10(X5+1);SX5=SQRT(X5); 
X6_2=X6**2;LX6=LOG10(X6+1);SX6=SQRT(X6); 
/* 
LFLOW=LFLOW-3.98335;LX6=LX6-3.04619; 
*/ 
LFLOWLX6=LFLOW*LX6; 
OBS=_N_; 
label x1='Average Groundwater Flow' 
      x2='Average Surface Water Flow' 
   x3='Average Purchased Water Flow' 
   x4='Total Average Flow' 
   x5='Average Well Depth' 
   x6='Source Water Pumping HP' 
   x7='Collection Energy Use' 
IF COLLECTION=0 THEN DELETE; 
DATA ONE; 
SET ONE; 
OBS=_N_; 
/* 
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PROC GLMSELECT; 
*partition fraction(TEST=.20 validate=0.20); 
MODEL LCOLLECTION=X1|X2|X3|X4|X5|X6| 
         LFLOW|FLOW2|SFLOW| 
   X1_2|LX1|SX1| 
   X2_2|LX2|SX2| 
   X3_2|LX3|SX3| 
   X5_2|LX5|SX5| 
   X6_2|LX6|SX6 @2 / SELECTION=LASSO; 
RUN;QUIT; 
*/ 
ODS GRAPHICS ON; 
PROC REG PLOTS=(DIAGNOSTICS(STATS=NONE) DFFITS DFBETAS 
PARTIAL);; 
MODEL LCOLLECTION=LFLOW LX6  / VIF INFLUENCE R PARTIAL SPEC; 
ID FLOW X6 ; 
OUTPUT OUT=SUMMARY STUDENT=RESIDUAL P=YHAT; 
PROC UNIVARIATE NORMAL PLOT; 
 VAR RESIDUAL; 
run; 
ODS GRAPHICS OFF; 
quit; 
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E.2 SAS Program Code for Raw Water Collection Energy Prediction Equation for 
Utilities with Purchased Water Flow 

 

PROC IMPORT OUT= WORK.ONE  
            DATAFILE= "C:\Johnston\RawWaterCollectionSAS_OnlyPurchased.xls"  
            DBMS=XLS REPLACE; 
     GETNAMES=YES; 
RUN; 
PROC PRINT; 
RUN; 
data one;SET ONE; 
COLLECTION=X7; 
COLLECTION2=COLLECTION**2;LCOLLECTION=LOG10(COLLECTION);SCOL
LECTION=SQRT(COLLECTION); 
FLOW=X4;FLOW2=FLOW**2;SFLOW=SQRT(FLOW);LFLOW=LOG10(X4); 
X1_2=X1**2;LX1=LOG10(X1+1);SX1=SQRT(X1); 
X2_2=X2**2;LX2=LOG10(X2+1);SX2=SQRT(X2); 
X3_2=X3**2;LX3=LOG10(X3+1);SX3=SQRT(X3); 
X5_2=X5**2;LX5=LOG10(X5+1);SX5=SQRT(X5); 
X6_2=X6**2;LX6=LOG10(X6+1);SX6=SQRT(X6); 
/* 
LFLOW=LFLOW-3.98335;LX6=LX6-3.04619; 
*/ 
LFLOWLX6=LFLOW*LX6; 
OBS=_N_; 
label x1='Average Groundwater Flow' 
      x2='Average Surface Water Flow' 
   x3='Average Purchased Water Flow' 
   x4='Total Average Flow' 
   x5='Average Well Depth' 
   x6='Source Water Pumping HP' 
   x7='Collection Energy Use' 
IF COLLECTION=0 THEN DELETE; 
DATA ONE; 
SET ONE; 
OBS=_N_; 
/* 
PROC GLMSELECT; 
*partition fraction(TEST=.20 validate=0.20); 
MODEL LCOLLECTION=X1|X2|X3|X4|X5|X6| 
         LFLOW|FLOW2|SFLOW| 
   X1_2|LX1|SX1| 
   X2_2|LX2|SX2| 
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   X3_2|LX3|SX3| 
   X5_2|LX5|SX5| 
   X6_2|LX6|SX6 @2 / SELECTION=LASSO; 
RUN;QUIT; 
*/ 
ODS GRAPHICS ON; 
PROC REG PLOTS=(DIAGNOSTICS(STATS=NONE) DFFITS DFBETAS 
PARTIAL);; 
MODEL LCOLLECTION=LFLOW LX6 LX3  / VIF INFLUENCE R PARTIAL SPEC; 
ID FLOW X3 X6 ; 
OUTPUT OUT=SUMMARY STUDENT=RESIDUAL P=YHAT; 
PROC UNIVARIATE NORMAL PLOT; 
 VAR RESIDUAL; 
run; 
ODS GRAPHICS OFF; 
quit; 
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E.3 SAS Program Code for Finished Water Distribution Energy Prediction Equation 

 

PROC IMPORT OUT= WORK.ONE  
            DATAFILE= "C:\Johnston\DistributionDataSAS.xls"  
            DBMS=XLS REPLACE; 
     GETNAMES=YES; 
RUN; 
PROC PRINT; 
RUN; 
data one;SET ONE; 
DISTRIBUTION=X6; 
DISTRIBUTION2=DISTRIBUTION**2;LDISTRIBUTION=LOG10(DISTRIBUTION)
;SDISTRIBUTION=SQRT(DISTRIBUTION); 
X1_2=X1**2;SX1=SQRT(X1);LX1=LOG10(X1); 
X3_2=X3**2;LX3=LOG10(X3+1);SX3=SQRT(X3); 
X2_2=X2**2;LX2=LOG10(X2+1);SX2=SQRT(X2); 
X5_2=X5**2;LX5=LOG10(X5+1);SX5=SQRT(X5); 
X4_2=X4**2;LX4=LOG10(X4+1);SX4=SQRT(X4); 
/* 
LX1=LX1-.96324;LX2=LX2-2.43724;LX3=LX3-3.00553;LX4=LX4-
1.81854;LX5=LX5-2.34092; 
*/ 
LX1LX3=LX1*LX3; 
LX3LX5=LX3*LX5; 
LX3LX2=LX3*LX2; 
LX3LX4=LX3*LX4; 
OBS=_N_; 
label x1='Total Average Flow' 
      x2='Length of Water Mains' 
   x3='Distribution Pumping HP' 
   x4='Average Distribution Pressure' 
   x5='Elevation Change' 
   x6='Distribution Energy Use' 
IF DISTRIBUTION=0 THEN DELETE; 
IF OBS=16 THEN DELETE; 
IF OBS=29 THEN DELETE; 
IF OBS=33 THEN DELETE; 
IF OBS=43 THEN DELETE; 
IF OBS=44 THEN DELETE; 
IF OBS=46 THEN DELETE; 
IF OBS=53 THEN DELETE; 
IF OBS=63 THEN DELETE; 
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IF OBS=67 THEN DELETE; 
IF OBS=83 THEN DELETE; 
IF OBS=84 THEN DELETE; 
IF OBS=88 THEN DELETE; 
IF OBS=94 THEN DELETE; 
DATA ONE; 
SET ONE; 
OBS=_N_; 
/* 
PROC GLMSELECT; 
*partition fraction(TEST=.20 validate=0.20); 
MODEL LDISTRIBUTION=X1|X2|X3|X4|X5| 
         LX1|X1_2|SX1| 
   X3_2|LX3|SX3| 
   X2_2|LX2|SX2| 
   X5_2|LX5|SX5| 
   X4_2|LX4|SX4 @2 / SELECTION=LASSO; 
RUN;QUIT; 
*/ 
ODS GRAPHICS ON; 
PROC REG PLOTS=(DIAGNOSTICS(STATS=NONE) DFFITS DFBETAS 
PARTIAL);; 
MODEL LDISTRIBUTION=LX1 LX3   / VIF INFLUENCE R PARTIAL SPEC; 
ID X1 X3 X6; 
OUTPUT OUT=SUMMARY STUDENT=RESIDUAL P=YHAT; 
PROC UNIVARIATE NORMAL PLOT; 
 VAR RESIDUAL; 
run; 
ODS GRAPHICS OFF; 
quit; 
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Appendix F 

Supplemental Information for Chapter 6 

 

Table F.1: Chemical usage data (lbs/yr) for the water utilities that participated in testing 
the GHG emissions accounting tool. 
 

Water Utility 
Chemical (lbs/yr) Utility A Utility B Utility C Utility F Utility G 

Alum 256480 7140000 1434506 1905500 
Ferric Chloride 446373 

Ferrous Chloride 
Chlorine 460000 720000 568646 32000 

Sodium Hypochlorite 50000 4200 1971420 
Lime 5300000 6185156 

Polymers 365600 8000 
Carbon Dioxide 

Oxygen 34513474 
Sodium Hydroxide 343450 4609672 372000 

Ammonia 348993 12000 
 

Table F.2: Vehicle fleet fuel usage and annual mileage for Utility A. 

Fuel Amount Used 
gallons/yr 

Gasoline 1770 

Annual Mileage Vehicle Type Fuel Type Model Year 
18000 Light-Duty Truck Gasoline 2005-present 
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Table F.3: Vehicle fleet fuel usage and annual mileage for Utility B. 

Fuel Amount Used 
gallons/yr 

Gasoline 17100 
Diesel 10000 

Annual Mileage Vehicle Type Fuel Type Model Year 
3408 Passenger Car Gasoline 1999 
18246 Passenger Car Gasoline 2001 
5496 Passenger Car Gasoline 2003 
20568 Passenger Car Gasoline 2005-present 
2340 Light-Duty Truck Gasoline 1995 
6456 Light-Duty Truck Gasoline 1997 
5532 Light-Duty Truck Gasoline 1998 
6288 Light-Duty Truck Gasoline 1999 
3450 Light-Duty Truck Gasoline 2000 

118356 Light-Duty Truck Gasoline 2005-present 
2040 Heavy-Duty Truck Gasoline 1999 
14100 Heavy-Duty Truck Gasoline 2004 
4620 Heavy-Duty Truck Gasoline 2005-present 
59724 Heavy-Duty Truck Diesel 1960-present 

 

Table F.4: Vehicle fleet fuel usage for Utility D. 

Fuel Amount Used
gallons/yr 

Gasoline 74170 
Diesel 52421 
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Table F.5: Vehicle fleet fuel usage and annual mileage for Utility F. 

Fuel Amount Used 
gallons/yr 

Gasoline 1000 

Annual Mileage Vehicle Type Fuel Type Model Year 
30000 Light-Duty Truck Gasoline 2005-present 

 

Table F.6: Vehicle fleet fuel usage and annual mileage for Utility G. 

Fuel Amount Used 
gallons/yr 

Gasoline 3000 
Diesel 100 

Annual Mileage Vehicle Type Fuel Type Model Year 
12000 Light-Duty Truck Gasoline 1999 
11000 Light-Duty Truck Gasoline 2001 
10000 Light-Duty Truck Gasoline 2002 
14400 Light-Duty Truck Gasoline 2004 
1000 Heavy-Duty Truck Diesel 1960-present 
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