Topology Optimization of a Tank Track Pad: Targeting Hyper-Elastic Compliance using an Elastic Material Structure

By: Zachary Satterfield
Advisor: Dr. Georges Fadel
Department of Mechanical Engineering, Clemson University, SC

Motivation:
High temperatures in elastomer pads of military tanks decrease their structural integrity, life and high maintenance costs:
- Temperature issue due to hysteretic nature of elastomers
- Highly dynamic and cyclic loading conditions assumed to cause hysteresis

Objectives:
- Replace hyperelastic rubber with equivalent metal meta-material by:
 - Obtaining constitutive parameters to be used in the design of meta-materials to meet specific mechanical requirements
 - Implementing topology optimization and tailor meta-material with the determined constitutive parameters
 - Procuring optimized part via additive manufacturing and validating on Abrams tank

Previous Work:
- Determine Elastomer Properties
 - FEA analysis completed in ABAQUS provided strain history of current hyperelastic material
 - 9 constants from the symmetric hyperelastic tangent elasticity tensors were determined for each strain levels for pure stress states
 - Tensors across multiple strain levels were evaluated due to nonlinearity of material

Hyperelastic Tangent Elasticity Tensors per Strain Level

<table>
<thead>
<tr>
<th>Strain State</th>
<th>C_{11}</th>
<th>C_{12}</th>
<th>C_{13}</th>
<th>C_{22}</th>
<th>C_{23}</th>
<th>C_{33}</th>
<th>C_{44}</th>
<th>C_{55}</th>
<th>C_{66}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniaxial Tension (ET)</td>
<td>1.1</td>
<td>2.0</td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.1</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Biaxial Tension (ET)</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Pure Shear (PS)</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Current Work:
- Targeted Results for Meta-Material:
 - Elastic material (e.g. steel)
 - Non-linear behavior
 - Meets strain targets for 3 pure stress states:
 - Uniaxial tension
 - Equi-biaxial tension
 - Pure shear

- Main Research Questions:
 1. Can non-linear hyperelastic behavior be achieved with an elastic meta-material (e.g. steel)?
 2. Can a multi-objective optimization be solved such that the resultant meta-material achieves 3 targeted non-linear stress-strain curves?
 - Should the target curves be weighted for optimization?
 - Should 3 layers be created with independent geometries?

Example of Topology Optimization:
- Problem: 2D cantilever beam (linear)
- Material: steel ($E = 200$ GPa, $\nu = 0.30$)
- Objective: maximize stiffness
- Constraint: 0.25 volume fraction

Future Work:
- Procurement
 - Create optimized meta-material via additive manufacturing processes
 - Material will currently be steel. Other possibilities exist (i.e. aluminum, titanium, alloys, etc.)
- Tank Trials
 - Validate prototypes on Abrams M1 tank under normal operating conditions

Acknowledgments:
- U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC)
- Mc Castellan Engineer, US Army TARDEC
- Dr. Richard L. Smith, Engineer, US Army TARDEC
- Dr. Georges Fadel
- Dr. Gang Li
- Dr. Nicola Curtis
- Process Research
- Mr. Anupam Bhagat

Meshed FBD of Cantilever Beam: Green is Design Space and Yellow is Non-Design Space

Resulting Topology: Truss Structure

Topology Optimization

Procure & Test

T158 Track Pad System