When a successful career in science and engineering is the destination, Clemson University provides the experiences and the opportunities that can get you there.

prepare for departure ...
The scientists and engineers who come to Clemson are the best and brightest, and they have been for over a century.

But here at Clemson, we realize that top-ranked academics are just the beginning of your race toward the future. That’s why you’ll also find hands-on learning opportunities.

Here, you’ll create life-building contacts with influential faculty and professionals — connections that will follow you long past graduation.

Research opportunities, travel abroad, mentoring programs, work experience and campus involvement are all part of the undergraduate experience. They are also key parts of shaping our students into the innovative and world-changing professionals of tomorrow.

From Clemson learner to world leader your journey has just begun.
First stop: Academics

U.S. News & World Report ranks Clemson University No. 21 on its list of best national public research universities.

And students who enrolled into the College of Engineering and Science in the fall 2013 freshman class had an average combined score of 1289 on the SAT, and the college’s retention rates are among the highest in the nation.

That commitment to student achievement and professional success in such a distinctive academic environment makes our graduates some of the most well-rounded leaders, collaborators and visionaries in their fields.

If a student wants to be an engineer, we offer all the resources we can to help him or her.

— Beth Stephan, Ph.D.

Stopover, success

The Princeton Review places Clemson as No. 12 on its national list of colleges with the happiest students. Alongside its top-ranked academics, Clemson offers the uncommon combination of a nurturing social environment and an exceptional learning environment. Clemson invests in student success at every turn, through a wide array of educational, pre-professional, research and service-learning programs, all designed to nurture curiosity, creativity, understanding and accomplishment.

The Final Leg

Hands-on, experiential learning opportunities encourage students to take the knowledge and experiences they’ve gained in the classroom and apply them to real-world and work environments. The engaged learning and undergraduate research opportunities offered to Clemson engineering and science students are a unique combination. By the end of their time here, our undergraduates are capable of making the kind of significant workforce contributions required in a global economy.
Who will be the more successful student? The one who enjoys learning, or the one who tolerates it?

A happy learner is an accomplished learner. And in Clemson University’s general engineering program (GE), enjoyment begins with an exploration of the world of engineering.

Every student who plans to major in engineering starts out by being admitted into GE. There, courses are designed to bridge the gap between high school and college-level learning, while students explore the 10 undergraduate engineering disciplines that are available at Clemson. With the support of academic advising, career counseling and engineering education, students can then choose the major that best fits their talents and interests.

“When we give students time and information to make sound decisions about their future, they can choose the career path best suited for them as individuals,” says Beth Stephan, Ph.D., a GE professor. “For students who want to be engineers, we offer all the resources we can to help them.”

GE course work is structured to help students become more independent learners, laying the groundwork for success in their future careers.

“For once they enter the workforce, there will no longer be someone standing up in front of a classroom telling them what they need to know,” Professor Stephan explains. “It’s important that students learn how to learn, and GE is a great first step.”

For Professor Stephan, what makes teaching GE courses so rewarding is that process of discovery that students enjoy during the first year in Clemson’s engineering program. With a more informed viewpoint, students can experience continued success throughout their academic career and beyond.

Says Professor Stephan: “My favorite part of my job is when students tell me I helped them realize they ‘think like an engineer.’”

50 to 60 percent of GE participants change their minds as to the type of engineering they wish to pursue.
88 percent of instructional faculty has a Ph.D. or equivalent.
31st; Ranking Clemson received among public colleges and universities in delivering a quality education at an affordable price, according to Kiplinger’s Personal Finance, 2014.

U.S. News & World Report ranks Clemson 21st among all national, public universities and eighth in its up-and-comers category for institutions that have made the most promising and innovative changes in the areas of academics, faculty, students and campus life.
Delphine Dean has a reputation for taking her students to distant places to accomplish big things. “Here’s a cervical collar for Tanzania,” says Dean, an associate professor in Clemson’s globally recognized Department of Bioengineering as she holds up a neck brace woven from grasses.

In much of Africa, medical equipment is costly and in short supply. So, Dean’s Creative Inquiry undergraduate research students designed a collar to be made affordably and locally by basketweavers.

Dean and her colleagues manage a total of 10 Creative Inquiry teams. One of those groups won the 2014 Lemelson-MIT national collegiate “Cure It!” undergraduate prize for technology inventions to improve health care. (A particularly exciting award for Dean, who is also an MIT graduate.) The winning work? Producing unusually low-cost glucose test strips using a standard inkjet printer and a glucometer — all out of widely available parts.

“We collaborate really well across the disciplines,” Dean says. “When students go to work for industry, they have great experience.”

A wide array of multidisciplinary projects and research opportunities abound for CES undergraduates, both on campus and abroad. These experiences and the contacts students make during them lay a solid foundation for a successful future in science and engineering.

**MISSION POSSIBLE**

Creative Inquiry (CI) at Clemson is one particularly imaginative program, combining engaged learning and undergraduate research to allow students to solve local, national and even international problems. Sometimes those problems are proposed by professors, but just as often issues are initiated by the students themselves.

As a result, CI participants develop critical thinking skills, while honing communication and presentation skills. Recent CES research projects, offered through the University’s Creative Inquiry program, include:

**Halogen Bonding Additives for the Enhanced Performance of Solar Energy Cells:** Current technology in dye-sensitized solar cells (DSSCs) relies on the iodide/triiodide redox couple as an electrolyte. Evidence has shown that, in addition to physical diffusion, movement of these ions between the electrodes of the cell can also occur by a more effective hopping mechanism. This project explores the effect of additives designed to promote this hopping mechanism.

Team leader: Weichiang Pang, civil engineering

**Bamboo Reinforced Concrete:** This project aims to address the substandard and dangerous construction of buildings with unreinforced concrete due to the high cost of rebar in many developing countries. This CI explores the possibility of using bamboo to replace steel to provide tensile reinforcement for concrete.

Team leader: Weichiang Pang, civil engineering

**Robots and Bioengineering:** The use of robots has become increasingly more prevalent for medical practice and in biomedical research. The goal of this Creative Inquiry class is to develop new robotic techniques that can interface with biological systems and people.

Team leaders: Delphine Dean and David Neuenwelt, bioengineering

**Halogen Bonding Additives for the Enhanced Performance of Solar Energy Cells:**

<table>
<thead>
<tr>
<th>Team leaders: John DesJardins, David Kwartowitz, Martine Laberge and Delphine Dean, bioengineering</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Roper Mountain Bioengineering Innovation Lab:</strong> Students in this CI work directly through the University’s Creative Inquiry program, include:</td>
</tr>
</tbody>
</table>
| **Halogen Bonding Additives for the Enhanced Performance of Solar Energy Cells:**
| Team leader: Weichiang Pang, civil engineering |
| **Bamboo Reinforced Concrete:**
| Team leader: Weichiang Pang, civil engineering |
| **Robots and Bioengineering:**
| Team leaders: Delphine Dean and David Neuenwelt, bioengineering |

**Hands-on Research**

**Research Experiences for Undergraduates (REU) opportunities are made available during the summer months. These research internships, often funded by the National Science Foundation or other public agencies, present a chance for students to get involved in innovative research projects and get paid for it!**

**Senior Capstone, mentoring and paid lab work can introduce students to multiple departments, students and faculty, helping to shape the future course of a student’s academic career.**

And throughout the year, a variety of on-campus seminars and symposia are offered almost weekly, introducing students to scientists and engineers from around the country.

[Visit Clemson’s Undergraduate Research Experience](http://clemson.edu/ces/departments/ece/undergrad/research_experience.html)

**These are great learning experiences, and they will help build up your résumé!**

— Delphine Dean, associate professor bioengineering
1,103 general engineering students
208 science students
5,400 total students

34% out-of-state
27% female
7% African-American

87% in the top 10 percent of high school class

Average Test Scores
1289 SAT
29 ACT
50%

*Includes general engineering and undecided engineering majors
Brenden Roberts joined the Calhoun Honors College as an incoming freshman. Right from the start he took advantage of special honors colloquium courses to fulfill a number of his general education requirements, paving the way for accelerated and advanced work during the rest of his college career.

“The instructors in honors courses treat students more like colleagues than students,” Brenden says, describing the experience as extremely rewarding. “I am still friends with a number of professors I met in those freshman courses!”

The Honors College’s Dixon Fellows program also offered him opportunities to meet not only fellow honors students, but also professors who have ushered him through some of his most meaningful undergraduate experiences.

During the four years he spent at Clemson, Roberts adopted a variety of hands-on research projects, including, most recently, simulating fluid dynamics for high Reynolds-numbers systems. (This describes objects moving at high speeds through thin liquids, like air.) “My research deals with a relatively new way to model these fluid dynamics, using parallel computation,” Brenden explains.

Thanks to Clemson’s strong ties to the automotive industry, Toyota Racing Department then heard about the simulations he was working on. “They are interested in testing the performance of their racecars, and my fluid models are exactly the type of simulation they need to conduct virtual wind tunnel testing of experimental car designs,” he says.

His other research has included two years of working with the Clemson Space Physics Group on a research project, using NASA sounding rocket experiments, which allowed him to travel for rocket launch campaigns and to present his research at geophysics conferences, even writing a peer-reviewed article. He also logged research on projects at other schools during the summer: one at Cornell University in particle accelerator physics and another at the University of California, Davis, in complexity sciences theory.

“Clemson University is well respected nationally for science and engineering, and has extensive connections with industry, which is of the utmost importance for being hired after graduating,” says Brenden, who will begin graduate school at Caltech in the fall of 2014, studying for his Ph.D. in physics, specifically in the field of quantum information. “The sense of commitment and happiness that I’ve been constantly exposed to is unique in my experience, and it really contributes to enjoying oneself in the daily business of being a student.”

Thanks to EUREKA! honors students conduct research with some of Clemson’s top faculty. Depending on the nature of the research project, some participants work with a faculty member in one-on-one monitored relationships. In other cases, EUREKA! participants may be part of a research team involving faculty, graduate students and other undergraduates.

Projects are available in almost every major and range from math, science and engineering to the social sciences and humanities.

Some of the benefits of EUREKA! include

* connecting with a family of academic mentors made up of a faculty adviser and that adviser’s graduate students and associates,
* learning an advanced skill that will contribute toward reaching your academic goals,
* an opportunity to stand out early for Rhodes, Goldwater, Fulbright and other major scholarships and
* the chance to get a jump on making Clemson your new home!
Here’s the thing about Clemson’s freshman residence hall for College of Engineering and Science students: There’s no “typical resident.” To walk the hallways of RiSE (Residents in Science and Engineering) is to discover open doors and a diverse array of students — from Greeks to gamers, from athletes to artists and everything in between.

Jaylin Carter has called RiSE home for the past two years: first as a freshman, then as a sophomore resident assistant. “My residents are involved in so much outside of the classroom: rugby, marching band, ROTC, fencing, the list goes on,” Carter offers. “They are all from many different backgrounds and ways of life, making colorful mixtures of personalities and ways of thinking.”

He discovered that caliber of diversity his freshman year, and it served as inspiration his sophomore year to make life for his residents as fun as possible.

“I wanted to live in this community because of all the resources and activities offered through RiSE,” Jaylin offers. “I remember my freshman year they had tutors located in the residence hall to help with our homework. All the other residents in my building were taking nearly all the same classes as me, so it was easy to get along and make friends.”

Nearly 400 CES students call RiSE “home.” Now the largest Living-Learning Community on campus, RiSE incorporates a new staffing model to support students with a coordinator, faculty director, a graduate assistant and a team of 12 tutors and 18 resident assistants.

Residence hall-wide events like ski trips and whitewater rafting provided ready-made social activities, while built-in study groups provided academic support during the all-important freshman year.

The result? RiSE is a co-ed residence hall where CES students enjoy a high rate of success, academically and socially.

“Since everyone was taking a lot of the same classes, we could all meet up in the lounge and do homework or study for a test. If you had a problem with a homework question you could literally go next door and ask your neighbors how to solve the problem,” Jaylin says.

He’s just as likely to pull an all-nighter with his fellow bioengineering classmates and RiSE residents as he is to spend the day tailgating and cheering on his Tigers with them.

“The fact that we are young, brilliant engineers who are going to rule the world makes me realize how bright our futures are.” Jaylin says, laughing. “Even in the present, I can appreciate all the fun times I have with my friends.”
Clemson offers more than 70 minors and hundreds of major-minor combinations to help you pursue special interests and complement your chosen field.

Accounting  
Adult/Extension Education  
Aerospace Studies  
Agricultural Business Management  
Agricultural Mechanization and Business  
Architecture  
Art  
American Sign Language Studies  
Animal and Veterinary Sciences  
Anthropology  
Athletic Leadership  
Biochemistry  
Biological Sciences  
Business Administration  
Chemistry  
Cluster  
Communication Studies  
Computer Science  
Crop and Soil Environmental Science  
Digital Production Arts  
East Asian Studies  
Economics  
Education  
English  
Entomology  
Entrepreneurship  
Environmental Science and Policy  
Equine Business  
Film Studies  
Financial Management  
Food Science  
Forest Resource Management  
Genetics  
Geography  
Global Politics  
Great Works  
History  
Horticulture  
International Engineering and Science  
Legal Studies  
Management  
Management Information Systems  
Mathematical Sciences  
Microbiology  
Military Leadership  
Modern Languages  
Music  
Natural Resource Economics  
Nonprofit Leadership  
Packaging Science  
Pan African Studies  
Park and Protected Area Management  
Philosophy  
Physics  
Plant Pathology  
Political Science  
Psychology  
Public Policy  
Religion  
Russian Area Studies  
Science and Technology in Society  
Screenwriting  
Sociology  
Spanish-American Area Studies  
Theatre  
Therapeutic Recreation  
Travel and Tourism  
Turfgrass  
Urban Forestry  
Wildlife and Fisheries Biology  
Women's Studies  
Writing

Accreditation
The Bachelor of Science (B.S.) degree programs in bioengineering, biosystems engineering, materials science and engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, industrial engineering and mechanical engineering are each accredited by the ABET Engineering Accreditation Commission. The B.S. program in computer science is accredited by the ABET Computing Accreditation Commission, abet.org. The new B.S. program in environmental engineering is designed to meet ABET EAC accreditation standards and will be evaluated by ABET when eligible.

CES enrolls more than 100 transfer students a year and has dual-education programs with several four-year institutions across the Southeast. Dual-education programs allow students to study two or three years at one institution and complete their B.S. degrees at Clemson University. Transfer students interested in engineering disciplines at Clemson are admitted into general engineering and must complete a common freshman-year curriculum before being admitted into an engineering baccalaureate program. Transfer students interested in science disciplines will go directly to those departments.

CES has dual-education programs with the following institutions:  
Anderson University  
Charleston Southern University  
Coastal Carolina University  
Converse College  
Erskine College  
Francis Marion University  
Furman University  
Lander University  
North Georgia College  
North Greenville College  
Presbyterian College  
Wofford College

Prospective students can learn more about Clemson engineering and set up a department-specific tour by visiting clemson.edu/ces/psu

Minors and Dual-Education Programs 17
The local population is seeing improvements in public health, gaining much-needed skills and striving for economic development. And, most of all, we are seeing a generation of young, morally straight students change the world and, in turn, themselves.

— industry partner David Vaughn, Fluor Corp. fellow and director of business continuity and disaster management
Bria Dawson had big dreams. Clemson made her realize she should be dreaming even bigger.

“When I started my journey here at Clemson, I knew that I would accomplish great things,” says Bria, a 2014 bioengineering graduate. “Even so, I’ve still been surprised by my growth and accomplishments over the last four years. Programs for Educational Enrichment and Retention (PEER) has given me the opportunity to reach so many of the goals I had for my college career.”

Along the way, PEER has provided:
- Opportunities to make lifelong friends
- Mentoring for minority freshmen from minority upperclassmen
- Personal counseling
- Study and time-management skills
- Career planning assistance

clemson.edu/peer/peer

teaming up for success!

PEER
For more than 20 years, Programs for Educational Enrichment and Retention (PEER) has offered an award-winning approach to student support — one that gives underrepresented students in CES a place to discover academic and professional success.

PEER helps students develop the skills they’ll need to be excellent engineering and science majors. Effective study skills, time-management techniques and insights from current, successful CES majors are all available through PEER.

WISE
Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Programs for Educational Enrichment and Retention (PEER) has given me the opportunity to reach so many of the goals I had for my college career.”

She spent two months in Singapore with a group of her fellow bioengineering students. Together, they worked with international researchers and faculty to study drug-delivery systems for treating HIV patients afflicted with macular degeneration, a condition that causes severe vision loss.

“My job was to be responsible for investigating the effect of cytomegalovirus (CMV) on HIV patients,” she says. “In response to our findings, we developed a sustained-release pericocular implant for the treatment of the virus. We cast polymeric thin films and completed a drug-release study. Finally, we processed and analyzed the data for further research.”

The work is complicated, but what’s even harder, she says, is describing how fulfilling the entire experience was for her — as a scientist, as a student and as a person. “My ability to affect the lives of others — knowing that I have made a positive, lasting impact on someone’s life — is an incredible feeling,” she says.

It’s an even better feeling, she says, than the moment she learned that she had received a national award for leadership in science from the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers: the Winifred Burks-Houck Women’s Leadership Award.

Once she got over the initial disbelief, she says she embraced the honor. “It’s given me even more self-assurance, which I know is going to be helpful when I look for a job in the pharmaceutical industry after I graduate,” she says.

PEER provided her with the resources and encouragement to study abroad, conduct undergraduate research, prove herself academically, and, “Most importantly,” she says, “impact others in a positive manner as a mentor. By surrounding me with successful people, PEER has given me no choice but to achieve at the next level!”

Hometown: Columbia, S.C. Major: Bioengineering, concentrating in biomaterials Class of 2014

Bria Dawson had big dreams. Clemson made her realize she should be dreaming even bigger.

“When I started my journey here at Clemson, I knew that I would accomplish great things,” says Bria, a 2014 bioengineering graduate. “Even so, I’ve still been surprised by my growth and accomplishments over the last four years. Programs for Educational Enrichment and Retention (PEER) has given me the opportunity to reach so many of the goals I had for my college career.”

Along the way, PEER has provided:
- Opportunities to make lifelong friends
- Mentoring for minority freshmen from minority upperclassmen
- Personal counseling
- Study and time-management skills
- Career planning assistance

clemson.edu/peer/peer

teaming up for success!

PEER
For more than 20 years, Programs for Educational Enrichment and Retention (PEER) has offered an award-winning approach to student support — one that gives underrepresented students in CES a place to discover academic and professional success.

PEER helps students develop the skills they’ll need to be excellent engineering and science majors. Effective study skills, time-management techniques and insights from current, successful CES majors are all available through PEER.

Along the way, PEER also provides:
- Opportunities to make lifelong friends
- Mentoring for minority freshmen from minority upperclassmen
- Personal counseling
- Study and time-management skills
- Career planning assistance

clemson.edu/peer/peer

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

WISE Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/

Clemson University ranks 15th among the nation’s universities in graduating African-American students in engineering, according to a survey by the magazine Diverse: Issues in Higher Education.

84 percent of women who participate in WISE graduate with science and engineering degrees.

Clemson’s Class of ’56 Academic Success Center (ASC) is designed to help students stay in school and maintain their scholarships. Housed in a new, 35,000-square-foot space, the ASC provides supplemental instruction, academic coaching and tutoring.

More than 50 percent of freshmen use the ASC during their first semester, and the University consistently reports retention rates of greater than 90 percent among those who use the ASC.

clemson.edu/asc

Find out more about mentoring programs: clemson.edu/admissions/mentoring.html

Teaming up for success!

PEER
For more than 20 years, Programs for Educational Enrichment and Retention (PEER) has offered an award-winning approach to student support — one that gives underrepresented students in CES a place to discover academic and professional success.

PEER helps students develop the skills they’ll need to be excellent engineering and science majors. Effective study skills, time-management techniques and insights from current, successful CES majors are all available through PEER.

Along the way, PEER also provides:
- Opportunities to make lifelong friends
- Mentoring for minority freshmen from minority upperclassmen
- Personal counseling
- Study and time-management skills
- Career planning assistance

clemson.edu/peer/peer

WISE
Science, technology, engineering and mathematics (STEM): These are the fields of study driving the future of our nation and our world. Research shows that girls are much more likely to pursue STEM occupations if they see and spend time with other women who have been successful in those fields.

That’s what WISE is all about, providing programs and services that put you in touch with other female STEM majors or other women in your field of study. WISE promotes:
- Academic and moral support
- Connections with other women in the major
- Study hall and study groups
- Tutoring

clemson.edu/ces/wise/
Building a racecar? Or building a successful career in automotive engineering?

The lines are blurred for members of Clemson University’s Formula Society of Automotive Engineers who devote themselves to designing and building open-wheeled, formula-style racecars that compete against other student-built cars around the nation.

A first-place finish in the annual SAE Student Design Competition is far from the finishline for members of this campus organization. The victory lap is a practical education in running a successful motorsports group — from fabrication and design to simulation, testing and, ultimately, racing.

“Formula SAE is well regarded in the automotive industry as one of the best undergraduate experiences for an aspiring automotive engineer,” says 2013-14 Formula SAE team leader and mechanical engineering student Kenny Brown.

Members represent a broad range of majors, from electrical and mechanical engineers to an economics major, Brown says. For his part, Brown worked with motorsports before he arrived on Clemson’s campus, and he knew he wanted to pursue Formula SAE as a part of his undergraduate experience.

“It was part of my criteria for picking the school I went to,” he says. “Clemson’s Formula team showed great potential and resources for learning.”

So, he joined the team as soon as he arrived on campus. His junior year, he became a team leader, which gave him responsibility for coordinating weekly meetings in addition to overseeing engineering and design work. He also worked on building the car, production and purchasing of car parts, and then he traveled to Michigan for the competition.

Not only has Brown networked with other schools and students across the nation by virtue of his involvement with Formula SAE, he also has worked closely with professionals in his chosen field, building relationships with engineering professors and industries that will prove crucial in his career, post graduation, in May 2015.

Brown worked with the Michigan-based prototype manufacturer Technique Inc. to laser-cut tubing for a spaceframe chassis he designed for his car. He’s also made use of multiple on-campus resources, including Clemson Machining and Technical Services and the Clemson Engineering Technologies Laboratory.

“Already, I have seen the impact of my involvement with the Clemson Formula Team,” Brown offers. “It helped me tremendously in co-op interviews, by giving me experiences to talk about, as well as the marketable skills I’ve gained from being a part of the team.”

There isn’t a ‘typical’ experience for a Formula SAE member. Members get out of it what they are willing to put in, and they are encouraged to do what interests them the most.

— Kenny Brown, Class of ’15 mechanical engineering
Chris Pollock earned a B.S. in chemistry from Clemson’s College of Engineering and Science in 2009, before making his way across the Atlantic to continue his education. A Clemson degree paved the way for a Ph.D. in physical inorganic chemistry, which he pursued at world-renowned Max Planck Institute for Chemical Energy Conversion in Mülheim, Germany.

While he was at Clemson, Pollock earned the Norris Medal, which recognizes the University’s best all-around student. But if you ask him, his undergraduate experience was much broader than a degree received or an award earned, largely as a result of research he conducted in two labs.

“I learned different skills from each of the labs I worked in, but perhaps most importantly, I discovered that I enjoyed both inorganic chemistry and biochemistry,” Pollock explains. He then took the next logical step to continue his research.

His senior year at Clemson, Pollock applied to seven graduate schools, all of which accepted him. The synthesis of the two disciplines and a wide selection of potential graduate advisers led him to choose Cornell. When his Cornell adviser got a job offer from the Germany-based Max Planck Institute, however, he chose to follow her and her research. He’s applied for a National Institute of Health fellowship, and he has plans to pursue a career in academia or with a national lab.

Above all, his Clemson connection has given Pollock the support and confidence he’s needed to find success.

“The environment that the people of CES create is one of encouragement and camaraderie, but it’s also one of constructive challenge,” Pollock concludes. “A part of the Clemson Family: That is really the perfect way to describe what it is like to be a member of CES.”

There are so many wonderful opportunities available at Clemson just waiting to be taken advantage of and so many people to help on the journey.

— advice to incoming CES freshmen from Chris Pollock, 2009 CES graduate and Norris Medal winner

Chris Pollock earned a B.S. in chemistry from Clemson’s College of Engineering and Science in 2009, before making his way across the Atlantic to continue his education. A Clemson degree paved the way for a Ph.D. in physical inorganic chemistry, which he pursued at world-renowned Max Planck Institute for Chemical Energy Conversion in Mülheim, Germany.

While he was at Clemson, Pollock earned the Norris Medal, which recognizes the University’s best all-around student. But if you ask him, his undergraduate experience was much broader than a degree received or an award earned, largely as a result of research he conducted in two labs.

“I learned different skills from each of the labs I worked in, but perhaps most importantly, I discovered that I enjoyed both inorganic chemistry and biochemistry,” Pollock explains. He then took the next logical step to continue his research.

His senior year at Clemson, Pollock applied to seven graduate schools, all of which accepted him. The synthesis of the two disciplines and a wide selection of potential graduate advisers led him to choose Cornell. When his Cornell adviser got a job offer from the Germany-based Max Planck Institute, however, he chose to follow her and her research. He’s applied for a National Institute of Health fellowship, and he has plans to pursue a career in academia or with a national lab.

Above all, his Clemson connection has given Pollock the support and confidence he’s needed to find success.

“The environment that the people of CES create is one of encouragement and camaraderie, but it’s also one of constructive challenge,” Pollock concludes. “A part of the Clemson Family: That is really the perfect way to describe what it is like to be a member of CES.”

There are so many wonderful opportunities available at Clemson just waiting to be taken advantage of and so many people to help on the journey.

— advice to incoming CES freshmen from Chris Pollock, 2009 CES graduate and Norris Medal winner

Chris Pollock earned a B.S. in chemistry from Clemson’s College of Engineering and Science in 2009, before making his way across the Atlantic to continue his education. A Clemson degree paved the way for a Ph.D. in physical inorganic chemistry, which he pursued at world-renowned Max Planck Institute for Chemical Energy Conversion in Mülheim, Germany.

While he was at Clemson, Pollock earned the Norris Medal, which recognizes the University’s best all-around student. But if you ask him, his undergraduate experience was much broader than a degree received or an award earned, largely as a result of research he conducted in two labs.

“I learned different skills from each of the labs I worked in, but perhaps most importantly, I discovered that I enjoyed both inorganic chemistry and biochemistry,” Pollock explains. He then took the next logical step to continue his research.

His senior year at Clemson, Pollock applied to seven graduate schools, all of which accepted him. The synthesis of the two disciplines and a wide selection of potential graduate advisers led him to choose Cornell. When his Cornell adviser got a job offer from the Germany-based Max Planck Institute, however, he chose to follow her and her research. He’s applied for a National Institute of Health fellowship, and he has plans to pursue a career in academia or with a national lab.

Above all, his Clemson connection has given Pollock the support and confidence he’s needed to find success.

“The environment that the people of CES create is one of encouragement and camaraderie, but it’s also one of constructive challenge,” Pollock concludes. “A part of the Clemson Family: That is really the perfect way to describe what it is like to be a member of CES.”

There are so many wonderful opportunities available at Clemson just waiting to be taken advantage of and so many people to help on the journey.

— advice to incoming CES freshmen from Chris Pollock, 2009 CES graduate and Norris Medal winner
There is more to the Clemson Experience than superior academics, which is a big part of what makes us such a sought-after university to attend. With broad opportunities to grow personally and professionally, our students leave this place better people and better citizens of a global community.

That experience looks like different things to different people. For one, it might be cheering on our Tigers at a high-energy football game. For another, it might mean serving the community or volunteering time and talents on campus with athletic teams and service organizations. And still others blaze a trail outside our campus, pursuing internships at innovative Upstate companies such as Michelin and BMW.

The common thread is that our campus goes beyond textbooks and lectures to provide a collaborative and nurturing environment. It’s a place where students can discover, innovate, enjoy life and apply new knowledge and skills — all of which combines to create students who are capable of making a lasting impact on the rest of the world.
The Class of 1944 Visitors Center — located on Alumni Circle, adjacent to the Alumni Center — offers a variety of informational services including guided tours, audiovisuals, general/referral information, departmental contacts and publications about the University and surrounding areas. A tour app is available by download or on lendable electronic devices. Visit clemson.edu/visitors to verify specific tour dates and times that coincide with your visit. Group tours may be scheduled upon request.

Scheduling CES Tours

A college tour is a great chance for you and your family to learn more about the CES-specific programs and facilities available to undergraduates.

CES offers structured afternoon tours on select Fridays in the fall and spring for those considering engineering majors. There are four engineering departmental tours clustered by related academic fields. Prospective science students may arrange an individual appointment with faculty from their area of interest.

To schedule tours of the College of Engineering and Science, visit clemson.edu/ces/tour.

For more information

On the Web: clemson.edu/admissions/undergraduate
From this page, you can find us on Facebook, Twitter, YouTube and iTunes.

On Twitter: twitter.com/ClemsonStudents
On YouTube: youtube.com/ClemsonUniversity

More information on anything Clemson: clemson.edu
More about the College of Engineering and Science: clemson.edu/ces/psu