
A self-organizing approach to the
design of complex engineered systems
John T. Hwang ・ Joaquim R. R. A. Martins (PI)

Motivation Theory
Engineering systems often involve
many coupled disciplines.
Orbit Dynamics Position Position

Attitude Dynamics Attitude Attitude

Cell Illumination Exposed area Exposed area

Temperature Temperature Temperature

Solar Power Solar power

Available power Energy Storage

Desired attitude Communication

Optimization exploits the coupling and
finds unintuitive designs.

Gradient-based optimization can
handle O(1000) design variables,

However, it is difficult to implement.

Project objective
To develop a self-organizing method to
couple multidisciplinary models for
optimization.

We mathematically formulate the
multidisciplinary computational model
as a nonlinear system:

Variables ...

�!

�!

Discipline 1

...

Discipline n

�!

�!

...

Residuals

Residuals

This formulation leads to an equation
that unifies all methods for computing
discrete derivatives.

10 AN ARCHITECTURE FOR COUPLING NUMERICAL MODELS

I

�@R

@x

�@F

@x

0

�@R

@y

�@F

@y

0

0

I

I

dy

dx

df

dx

0

dy

dr

df

dr

0

0

I

=

I

0

0

0

I

0

0

0

I

Figure 3. The block structure of the matrices in the left equality of Eq. (22).

Following from Eq. (19), the matrix du/dr is also equal to the inverse of @R/@u, leading to

@R

@u

du

dr
= I =

@R

@u

T du

dr

T

, (22)

which we refer to as the unifying chain rule equation. The left and right equalities are denoted as
the forward mode and the reverse mode, respectively, drawing inspiration from terminology used in
algorithmic differentiation. The unifying chain rule (22) is presented by Martins and Hwang [40]
with different notation and an alternate interpretation and derivation. In that paper, we also show
in detail how this equation unifies all methods—how the finite-difference method, complex-step
method, algorithmic differentiation, direct method, adjoint method, and the chain rule can all be
derived from the unifying chain rule (22).

For independent and variables, the r in the denominator of du/dr can be replaced with the symbol
for the variable itself, as shown in Fig. 3. The derivatives of interest are df/dx, which is a sub-block
of du/dr. Computing df/dx involves solving a linear system with multiple right-hand sides, so this
is more efficient with the left or right equality in Eq. (22), depending on the relative sizes of f and
x.

4. A HIERARCHICAL SOLUTION STRATEGY

The high-level objective of the MAUD architecture is to facilitate two tasks: the evaluation of a
computational model with multiple components and the efficient computation of its derivatives
across the various components. The significance of the mathematical formulation presented in Sec. 3
is that the different algorithms for performing these two tasks are unified in an elegant way that
simplifies the implementation of the computational framework. The task of evaluating a coupled
computational model reduces to solving a system of algebraic equations, and the task of computing
derivatives reduces to solving a system of linear equations.

Therefore, at a high level, the framework must be able to solve four types of systems:

1. The nonlinear
system

2. The Newton
system

3. Derivatives in
forward mode

4. Derivatives in
reverse mode

R(u) = 0
@R

@u

�u = �r

@R

@u

du

dr
= I @R

@u

T du

dr

T

= I

However, the monolithic approach of the MAUD architecture has a potential pitfall. The MAUD
architecture is designed to handle components with distributed data parallelism, so the data sets
and system sizes may be large in some problems. MAUD assembles a larger-than-necessary system
of equations, which has the potential to introduce significant memory and computing overhead,
when compared to an ad hoc implementation without a framework. For instance, if a computational
model has two components that can be run in sequence, it would be inefficient to use a Krylov solver

JOHN T. HWANG AND JOAQUIM R. R. A. MARTINS 7

where n = m + p + q. The variables are restricted to be in a set of permitted values u
k

2 D

k

, where
D

k

✓ RN

k is a Cartesian product of N
k

closed intervals, for all k = 1, . . . , n.
With u selected to be the set of unknowns for the algebraic system, we now define the

corresponding residuals as the functions R
k

: D1 ⇥ · · · ⇥ D

n

! RN

k for k = 1, . . . , n, where

R1(u) = x1 � x

⇤
1,

...
R

m

(u) = x

m

� x

⇤
m

,

R

m+1(u) =

⇢
y1 � Y1(x1, . . . , xm

, y2, . . . , yp) , y1 is explicitly defined
�R1(x1, . . . , xm

, y1, . . . , yp) , y1 is implicitly defined ,

...

R

m+p

(u) =

⇢
y

p

� Y
p

(x1, . . . , xm

, y1, . . . , yp�1) , y

p

is explicitly defined
�R

p

(x1, . . . , xm

, y1, . . . , yp) , y

p

is implicitly defined ,

R

m+p+1(u) = f1 � F1(x1, . . . , xm

, y1, . . . , yp),
...

R

m+p+q

(u) = f

q

� F
q

(x1, . . . , xm

, y1, . . . , yp).

(5)

A minus sign precedes the residuals for the implicit state variables because it yields more intuitive
formulae later, when computing derivatives in Sec. 3.3.

This technique of defining residuals for explicit variables as the difference between the variable
and the function output was used previously by Albersmeyer and Diehl [39] in what they term the
‘lifted Newton method’. That method starts with what is already a nonlinear system and modifies
Newton’s method to try to improve the convergence properties; in contrast, here, we are taking
heterogeneous computational models and turning them into a nonlinear system while ensuring the
existing solution methods can still be used in the new formulation.

Let R : D ! Rn be defined by R = (R1, . . . , Rn

), where D = D1 ⇥ · · · ⇥ D

n

. Then, the
numerical model can be written as the following algebraic system of equations:

R1(u1, . . . , un

) = 0
...

R

n

(u1, . . . , un

) = 0

9
>=

>;
, R(u) = 0. (6)

The unified formulation of any numerical model is the algebraic system of equations R(u) = 0,
referred to hereafter as the fundamental system. Its significance lies in the fact that the vector u⇤ that
solves the fundamental system (6) is also a solution of the numerical model (2).

3.3. Computation of derivatives

In the context of optimization, the design variables that the optimizer varies are a subset of the
input variables x1, . . . , xm

of the numerical model, and the objective and constraint functions given
to the optimizer are a subset of the output variables f1, . . . , fq of the numerical model. Thus, the
derivatives of interest are those of the output variables with respect to the input variables—i.e.,
d(f1, . . . , fq)/d(x1, . . . , xm

).
The methods for computing derivatives can be divided into four categories that are reviewed

by Martins and Hwang [40]: finite-step methods, chain rule, analytic methods, and algorithmic
differentiation. The simplest form of the first type is the finite-difference method, which is the
easiest method to implement and can be used for black boxes, but it has limited accuracy because
the error is either dominated by truncation or subtractive cancellation, depending on the step size.
The complex-step method [41, 42] addresses the accuracy issue by eliminating the subtractive
cancellation error, but like the finite-difference method, the computational cost scales linearly
with the number of input variables, which can be large in some applications. The second class of
methods computes derivatives of components and combines them using the chain rule, though this

Parallel framework
We have implemented these equations
in a parallel framework for
multidisciplinary optimization.

They have also been adopted in
NASA’s OpenMDAO framework.

Application
This framework has been applied to
several engineering problems including
nano-satellite design.18 AN ARCHITECTURE FOR COUPLING NUMERICAL MODELS

Figure 8. Design structure matrix of the computational model for the nanosatellite. Each block on the
diagonal is a component (a class derived from ElementarySystem).

be as short as a year, the objective of this project is to develop a computational model for the CubeSat
and apply optimization to help expedite the design process, while improving the final design.

Part of the motivation for applying optimization is the multidisciplinary nature of the problem.
The CubeSat stores energy collected by the solar panels in batteries and uses power for three
main purposes: powering the onboard circuitry and the scientific instruments that collect research
data, transmitting this data to ground stations on Earth, and powering the momentum wheels
that enable attitude control. These operations cover several disciplines—orbit dynamics, attitude
dynamics, actuation, solar cell illumination, temperature, solar power generation, energy storage,
and communication.

The models for the disciplines result in 43 separate components (ElementarySystem objects),
each of which defines several variables. Determining some of these variables requires the solution
of computational models based on ordinary differential equations (ODEs)—this includes the
orbit trajectory, attitude profile, temperature variations, and battery charge level over time. These
variables that are determined by solving ODEs are implicit, while the remaining ones are explicit.
Other variables require interpolating tables of discrete, pre-computed data to obtain smooth
functions. In total, there are roughly 200 variables with a complex set of dependencies, as shown
in Fig. 8, which amounts to 2.2 million unknowns. The optimization problem has a total of over
25,000 design variables because multiple profiles that vary in time are simultaneously optimized.
The optimizer we use is SNOPT [46], which efficiently solves nonlinear constrained optimization
problems that are large-scale and sparse using sequential quadratic programming (SQP), and the
pyOpt optimization framework [47] is used as the interface to SNOPT.

Figure 9 plots some of the simulation results at the optimized design point, illustrating the
power of a large-scale optimization. The operational design variables consist of the discretized
communication power, roll angle, and solar panel current curves. As shown in Fig. 9, the optimizer
determines that it is optimal to spike the power allocation to the communication module only when
there is a line of sight from the satellite to the ground station. Similarly, the optimizer determines
the optimal roll angle profile to balance the competing objectives of maximizing power generation,
shading some of the solar cells when they are overheated, and maximizing signal strength during
data transfers to the ground station. Optimizing several discretized curves can result in hundreds,
or in this case, tens of thousands design variables, but these results show that our framework can
handle such problems.

The MAUD architecture provides two unique benefits that enable the solution of the satellite
design optimization problem. The first benefit is the efficiency in executing the computational
model. Since there are 200 variables that all depend on each other, the MAUD architecture’s
efficient data handling and transfer operations are critical, particularly with a total of 2.2 million
unknowns when all the variables are combined. When solving the large linear systems that arise,

Self-organizing approach

Figure 3: Partitioning of a 20 component design process: graph view (left) and design structure
matrix (right)

find an architecture tailored to the specific problem. This is the end goal of the proposed research,
on which elaborate in the next section.

4.4 Self-Organizing Approaches

As mentioned previously, we believe that a self-organizing design approach that evolves to adapt
to the problem at hand would be able to handle complex systems in a way that is impossible to
do with a static rigid framework. The question then becomes: Which strategies can we devise to
achieve e↵ective self-organization? In this section we describe a recently developed preliminary
strategy that shows promising results, and then speculate about other possibilities.

The preliminary self-organizing strategy relies on graph theory, which has a direct connection to
the mathematical framework presented in the previous section through the graph adjacency matrix.
The graph adjacency matrix correspond to the design structure matrix in MDO problems, which
in turn can be obtained from the Jacobian of the coupled system. The mathematical framework
presented in the previous section enables to automatic computation of this Jacobian, so we can
readily compute the information required to form the complete graph of the coupled problem.

The graph-based self-organizing algorithm consists of three fundamental operations: 1. Parti-
tioning, 2. Reordering and 3. Coordination. We describe each of these operations in detail and
then present some preliminary results that were obtained by applying this strategy.

Partitioning divides the overall analysis and design problem into nested clusters of components
such that the loss in the coupling between components due to those divisions is minimized. This can
be treated as a meta-optimization that optimizes the structure of the design optimization process
itself.

We start by representing design optimization process by a graph whose vertices are the sys-
tem components and whose edges represent the data exchanges between those components. The
partitioning of the design process can then can be solved with iterative k-way graph partitioning
algorithms [20, 21]. There are two types of partitioning algorithms: iterative improvement methods
and global methods. The most widely used iterative method is the Kernighan–Lin (KL) algorithm,
which solves a graph bisection problem to achieve partitioning [21]. Fiduccia and Mattheyses [13]
modified the KL algorithm to handle weighted edges and vertices. Global methods such as spectral-
based methods, network-based methods, and hybrid genetic algorithms formulate the k-way par-
titioning problem as a global optimization problem and solve for the optimal partition to avoid

8

We are now developing ways to
optimally order and group the
disciplines for efficiency and
robustness.

