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IGA on triangulations in 3D

Motivation: integrating CAD and FEA

» Physical domain

@ Exact representation of CAD geometry d+1 | I, f .
@ Applicable to complex topologies f = Taf ey < Cuh§™ 7> VGG F i), V€ HFHQ) r p © Parametrization
@ High order of smoothness =0
@ Automatic parametrization \ @ Conditions for optimal convergence
@ Ease of local refinement - Spaces with stable local basis: all C* spaces and C", C"* G [Is(f o G)
. i - . . macro-element spaces
Basic approach: IGA on triangulations in 2D . Same geometric map G during refinement -
@ Bivariate basis function G(&) =S plvi(€) =3 pjo;(€) '
® free control points p{. (or domain poir%ts qf) B ( S) B d! ik
© Dependent control points p? (or domain points q?) ki - i!j!k!u o Refinement pI‘OCGdUI‘eS (@) Input:  bicubic NURBS boundary (b) Convert bicubic (c) Lienarize the Bézier trian- (d) Replace boundary and
W | W oTrianguIar Bézier patch: ) patches Béz?er patch to sextic gles apd tetrahedralize the sur- smpoth the interior control
Geometrical map @ Refine-then-smooth Bézier triangles face triangulation points
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o o o - o Triangular Bézier Spline (TBS) ® Example: elasticity on a propeller
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: : i+j+k=d VijkZ2ijk.d ° g;zeggggst nodes » fixing the interior cylindrical surface
o = Nodes violating constraints » setting traction t = (0,0, —10n.] if n, > 0 and zero
e A— , G nodes otherwise.
Physical mesh with = Parametric mesh with ~ setting Young’s modulus E = 10°, Poisson’s ratio !
control points p; = p; U pj domain points q; = q; U q U — (3.
1 ) N .
ne b ¢ mesh C'* mesh Mesh data (a) Element samples (b) Deformed shape

» 6,431 elements and 798,366 dofs

(a) Domain points of the Bézier » Initial mesh does not have enough smoothness. . . :
ordinates by » Some control points (blue squares) need to be relocated after refinement to satisfy the Optlmal convergence in C" Space In 3D
Basis functions 4 — Ceb continuity constraints. -
. » Relocation of the control points leads to a change of the geometric map. @ Smoothness conditions
1 ESUFKNDSEEY} = {Vi,VQ,Vg,Vﬁ} and 75 ?:-{V5JV2fV4,V3} are two

00 Srfnooth-r?fin?-sr?ooth tetrahedra sharing the face F := {v,, v, v4} of A. Two polynomials

- 0 L ¢ fiand f, of degree d on 7 and 715 join together with C" continuity
Field approximation Integration on parent element across the face F' if and onIy if for m = 0,---,7,
(b) Triangular Bézier patch b(&). [~ ~ S
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NURB Bézier triangulation domain points /- X\ A O mesh 2 mesh O mesh @ Example: Poisson problem
extraction generation /N - /\ v .
\ / \ (’ » Construct a mesh with enough smoothness before refinement.
v v » Geometric map stays the same during refinement.
e Smoothness conditions Example: Poisson problem Ry
Let & be the barycentric coordinates of v, w.r.t. {v{,vo, v3}, then two
patches will be C” continuous iff 7 - 7 Ko RA - A
[; R b B (v C oy ) — . (a) S1(A4) physical mesh (b) S1(A4) parametric mesh  (c) Non-smooth gradient  (d) Smooth gradient (e) Optimal convergence in
pdk Z RtV g W":< 4) @ Problem definition Q,O/’D across the diagonal (ele- across elements with C* C! space.
PAVTR=p V2 — f inQ —r ment edge) with C° ele- elements.
forall p<randp+j+ k=d. o on F’ v ments.
@ Macro-element spaces o | A A Concl ion
» Polynomial macro-element spaces: d > 4r + 1, e.qg., v . v, where QO QO ONnclusio
1 1,2 2,4 . . ' A
S5(1),857(T), 847(T) . o1 . (a) Two domain triangles with C! con- f(z,y) = 2sin(x) sin(y), — — @ A smooth-refine-smooth scheme is developed. It is the only scheme that has demonstrated optimal
. PS macro-element spaces: d > ==, forrodd,eg.,s, gps) straints. (z,y) = sin(z) sin(y). ] , , , Voo N NN N convergence rates for C" elements involving extraordinary nodes.
' 4 : ’ C : : :
\d > 97] , forreven,e.g., S;°(1)) (a) Input domain with NURBS (b) Initial quadratic parametric  (c) Initial quadratic physical mesh. @ The parametrization can be fully automated for complex domain. Local refinement can also be easily
\ .
CT macro-element spaces:< d 23, for r odd, €.g., S3(T:) o - mplemented.
g N d> 1. forr even. e.q.. S3(T SN 3 @ A prototype software of isogeometric analysis based on rational triangular Bézier splines (rTBS) is
d=>3r+1, forreven, eg., & (Tx) R\\d‘;‘&bﬁ

developed. Any form of C" Bézier elements can be used.
@ The prototype software has been successfully applied for both 2D and 3D problems.
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@ Construction of " basis 7

» Direct construction in macro-element spaces
1. Directly select a minimum number of free nodes b/ according to
the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity
condition bp = CIb/
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2. Get rid of redundant continuity constraints by Gaussian
elimination bp = CTb/

@ Optimal convergence
rates are obtained in all
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