Improving Virtual Product Development Through Isogeometric Analysis Based on Rational Triangular Bézier Splines
Principal Investigator: Xiaoping Qian Research Assistants: Songtao Xia, Cunfu Wang
Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

C^{1} macro-element space with Alfeld split

(c) Lienarize the Bezier trian-
gles and tetane
(d) Replace
smooth
sooundary and
toine
interior control
col

$$
\mathcal{S}_{1}\left(\Delta_{A}\right):=\left\{s \in \mathcal{S}_{5}^{1}\left(\Delta_{A}\right): s \in C^{2}(v), \forall v \in \mathcal{V}, s \in C^{4}\left(v_{T}\right), \forall T \in \Delta\right\}
$$

Example: Poisson problem

Conclusion

- A smooth-refine-smooth scheme is developed. It is the only scheme that has demonstrated optimal convergence rates for C^{r} elements involving extraordinary nodes.
- The parametrization can be fully automated for complex domain. Local refinement can also be easily implemented.
- A prototype software of isogeometric analysis based on rational triangular Bézier splines (rTBS) is The prototyny form of C^{r} Bézier elements can be used.

㲘

Publications

Xia, S., Wang, X., and Qian, X., Continuity and convergence in rational triangular Bézier spline based isogeometric analysis, Computer Methods in Applied Mechanics and Engineering 297 (2015) 292-32 . Jaxon, N. and Qian, X., Isogeometric analysis on triangulations, Computer-Aided Design 46 (2014)

Patent pending

. Qian, X. and Xia, S., Isogeometric analysis with Bézier triangles, Wisconsin Qian, X. and Xia, S., Isogeometric analysis with Bezier
Alumni Research Foundation, filing date: $03 / 16 / 2015$.

Special issue pending

- Co-editing a special issue, Isogeometric Design and Analysis, in journa
Computer-Aided Design Computer-Aided Design.

