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Motivation: integrating CAD and FEA
Exact representation of CAD geometry
Applicable to complex topologies
High order of smoothness
Automatic parametrization
Ease of local refinement
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(a) Problem definition. (b) Coarse C

0 mesh.

(c) b⌦ and coarse T . (d) Locally refined C

0 mesh.

(e) S1
2(TPS) mesh. (f) Analysis result.

Fig. 16. Isogeometric analysis of the advection–diffusion problem. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

(a) C0 stream cross-section.

(b) C1 stream cross-section.

Fig. 17. Solution cross-sections at x = 2.

Powell–Sabin split, and performing the projections of Step 3, then
the rTBS mesh (shown in Fig. 19(c)) is constructed. In Fig. 19(c),
16 exceptional vertices with 4 for each circle are introduced. The
resulting analysis field is again globally bijective and C

1 smooth
except in the immediate vicinity of each exceptional vertex.

6. Conclusions

Wehavepresented a new isogeometric analysis approach based
on rational Triangular Bézier Splines (rTBS). The rTBS parametriza-
tion of a NURBS-bounded domain can be fully automated. This

approach is applicable to complex topologies. Various local refine-
ment schemes can be readily implemented. We have presented
a set of procedures for constructing a globally C

r -continuous
basis for representing both physical field and the domain geom-
etry with exact recovery of its NURBS boundary. We have also
introduced the concept of exceptional vertices/edges where a
reduced set of continuity constraints is imposed at boundary ver-
tices. The reduced continuity at exceptional vertices and edges
leads to global bijectivity and improved mesh quality and analy-
sis results. Unlike tensor-product NURBS, such reduced continuity
becomes highly localized with mesh refinement. This rTBS-based
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(a) Knot point singularities. (b) Exceptional vertices.

(c) Uniform 1. (d) Uniform 2. (e) Uniform 3.

Fig. 18. Uniformly refined analysis results show the effects of knot point singularities (a), and exceptional vertices/edges (b) (edges indicated in red). Exceptional edges
recede on refinement (c)–(e). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(a) Problem description. (b) Locally refined C

0 mesh.

(c) C1 mesh. (d) C1 analysis result.

Fig. 19. Isogeometricmeshing and analysis for a genus 4 domain. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version
of this article.)

isogeometric analysis has been shown to be convergent withmesh
refinement on linear elasticity and advection–diffusion problems.

Future work will focus on improving rTBS element quality
to achieve optimal convergence rate, studying the nestedness of
spline space, and extending this approach to three-dimensional
problems.
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Basic approach: IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi
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Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑

i+j+k=d pijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑

i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Domain points of the Bézier
ordinates bijk.
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier ordi-
nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.
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(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.
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(b) Triangular Bézier patch b(ξ).

Construction of Cr basis
Domain parametrization

1

NURBS
boundary -

Bézier
extraction -

triangulation
-

domain points
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mesh move

1

Smoothness conditions
Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two
patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.
Macro-element spaces
I Polynomial macro-element spaces: d ≥ 4r + 1, e.g.,
S1

5(T ),S1,2
5 (T ),S2,4

9 (T )

I PS macro-element spaces:

{
d ≥ 9r−1

4 , for r odd, e.g., S1
2(Tps)

d ≥ 9r+4
4 , for r even, e.g., S2,3

5 (Tps)

I CT macro-element spaces:

{
d ≥ 3r, for r odd, e.g., S1

3(Tct)

d ≥ 3r + 1, for r even, e.g., S2,3
7 (Tct)

Construction of Cr basis
I Direct construction in macro-element spaces
1. Directly select a minimum number of free nodes bf according to

the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity

condition bD = CTbf

I Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs

AbD = 0
2. Get rid of redundant continuity constraints by Gaussian

elimination bD = CTbf
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v3 v4

1

(a) Two domain triangles with C1 con-
straints.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 conti-
nuity.

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every f ∈ W k,d+1, there exists a
spline s ∈ Srd(T̂ ) such that

|f−s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d. [Lai, M.J., et al., 2007]

I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0

‖∇G‖i−d−1
L∞(G−1)|f |H i(T ), ∀f ∈ Hd+1(Ω)

Conditions for optimal convergence
I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ

macro-element spaces
I Same geometric map G during refinement
G(ξ) =

∑m
i pfi ψi(ξ) =

∑n
j pjφj(ξ)
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Refinement procedures
Refine-then-smooth

Refine-then-smooth scheme: S1
5(T )
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u

Refine-then-smooth scheme: S1
3(Tct)

↓

(g) T 0
u,u (h) T 0

u,u,ct∗ (i) T 1
u,u,ct

 

 

T 1

c t

T 1

u ,c t

T 1

u ,u , c t

Xia, S., et al. (UW-Madison) Convergence in IGA on Triangulations May 31, 2015 2 / 2

Xia, S., et al. (UW-Madison) Convergence in IGA on Triangulations October 24, 2015 1 / 1

-Refine -Smooth

1

C0 mesh C0 mesh C1,2 mesh

 

 

Dependent nodes

Free nodes
Nodes violating constraints

C
2 nodes

C
1 nodes

I Initial mesh does not have enough smoothness.
I Some control points (blue squares) need to be relocated after refinement to satisfy the

continuity constraints.
I Relocation of the control points leads to a change of the geometric map.

Smooth-refine-smooth

Smooth-refine-smooth scheme: S1,2
5 (T )

(a) T 0 (b) T 2 (c) T 2
u (d) S1,2

5 (T 2
u)
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-Smooth -Refine -Smooth

1

C0 mesh C2 mesh C2 mesh C1,2 mesh

I Construct a mesh with enough smoothness before refinement.
I Geometric map stays the same during refinement.

Example: Poisson problem

Problem definition{
−∇2u = f in Ω,

u = ū on Γ,

where

f (x, y) = 2 sin(x) sin(y),

ū(x, y) = sin(x) sin(y).
(a) Input domain with NURBS
boundary.

(b) Initial quadratic parametric
mesh.

(c) Initial quadratic physical mesh.

(d) Parametric mesh in S12(T̂ps). (e) Physical mesh in S12(T̂ps). (f) Parametric mesh in S15(T̂ ). (g) Physical mesh in S15(T̂ ).

Optimal convergence
rates are obtained in all
C0 spaces.
Optimal convergence
rates are obtained in C1

spaces only when the
smooth-refine-smooth
scheme is used.
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(h) Optimal convergence rates in
C0 spaces.
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(i) Decreased convergence rates
in C1 spaces with refine-then-
smooth scheme.
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(j) Optimal convergence rates in C1

spaces with smooth-refine-smooth
scheme.

IGA on triangulations in 3D

Parametrization

Isogeometric Analysis on Triangulations
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Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement
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d!

i!j!k!
uivjwk

Triangular Bézier patch:
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Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1

v1 v2

v3
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(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.
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(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.
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(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
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Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct
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Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.
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Elasticity problem 43
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(b) Smooth-refine-smooth
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IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic
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1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/
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(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Construction of Cr basis
Domain parametrization

1

NURBS
boudanry -

Bézier
extraction -

triangulation
-

domain points
generation -

mesh move

1

Smoothness conditions
Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be
Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.
Macro-element spaces
I Polynomial macro-element spaces: d ≥ 4r + 1, e.g., S1

5(T ),S1,2
5 (T ),S2,4

9 (T )

I PS macro-element spaces:

{
d ≥ 9r−1

4 , for r odd, e.g., S1
2(Tps)

d ≥ 9r+4
4 , for r even, e.g., S2,3

5 (Tps)

I CT macro-element spaces:

{
d ≥ 3r, for r odd, e.g., S1

3(Tct)

d ≥ 3r + 1, for r even, e.g., S2,3
7 (Tct)

Construction of Cr basis
I Direct construction in macro-element spaces
1. Directly select a minimum number of free nodes bf according to the connectivity

of the elements
2. Determine the values of other dependent nodes by the continuity condition

bD = CTbf

I Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ )
such that

|f − s|
W k,d+1(Ω̂)

≤ Chd+1−k
T̂

|f |
W d+1,d+1(Ω̂)

, 0 ≤ k ≤ d. [Lai, M.J., et al., 2007]

I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0

‖∇G‖i−d−1
L∞(G−1)

|f |Hi(T ), ∀f ∈ Hd+1(Ω)

Conditions for optimal convergence
I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Ω̂T̂
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Refinement procedures
Refine-then-smooth

Refine-then-smooth scheme: S1
5(T )

(a) T 0 (b) T 0
u (c) T 1,2

u

Refine-then-smooth scheme: S1
3(Tct)

↓

(g) T 0
u,u (h) T 0

u,u,ct∗ (i) T 1
u,u,ct
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-Refine -Smooth

1

C0 mesh C0 mesh C1,2 mesh

 

 

Dependent nodes

Free nodes
Nodes violating constraints

C
2 nodes

C
1 nodes

Initial mesh does not have
enough smoothness.
After refinement, some
nodes need to be relocated
to satisfy continuity
constraints, resulting change
of the geometric map.

Smooth-refine-smooth

Smooth-refine-smooth scheme: S1,2
5 (T )

(a) T 0 (b) T 2 (c) T 2
u (d) S1,2

5 (T 2
u)
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-Smooth -Refine -Smooth

1

C0 mesh C2 mesh C2 mesh C1,2 mesh

Example: Poisson problem

(c) Input domain with NURBS boundary. (d) Initial quadratic parametric mesh. (e) Initial quadratic physical mesh. (f) Parametric mesh in S12(T̂ps).

(g) Physical mesh in S12(T̂ps).
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(i) Convergence rates in C1 space with
nested refinement sequences.
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(j) Convergence rates in C1 space with
nested refinement sequences.

IGA on triangulations in 3D

Parametrization
1. Extract tensor-product Bézier patches from the input NURBS surface patches.
2. Convert tensor-product Bézier patches to triangular Bézier patches.
3. Linearize the Bézier triangles to form a surface triangulation, from which a tetrahedralization is generated.
4. Elevate the degree of the tetrahedral elements and move the control points to reproduce the original NURBS surface.

CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 2 / 7

(a) Input: bicubic NURBS boundary
patches

?

1

(b) Extract Bézier rectangles and convert
to Bézier triangles

(c) Lienarize the Bézier triangles and tetra-
hedralize surface triangulation

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi

�

G =
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i
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-

G−1
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Dependent control points

Free control points pfi (or domain points qfi )
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Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations
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dinates bijk in {v1,v2,v3}.

Cr constraints on triangulations

Cr constraints on triangulations
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nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0

‖∇G‖i−d−1
L∞(G−1)

|f |Hi(T ), ∀f ∈ Hd+1(Ω) Ω̂T̂
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Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct
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- -Smooth

?Refine

- -Smooth

Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.
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Elasticity problem 43
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(b) Smooth-refine-smooth
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IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 3 / 4

1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/

(d) Replace boundary and smooth the in-
terior points to reproduce original NURBS
surface (6,431 elements and 798,366
dofs)

Parametrization
1. Extract tensor-product Bézier patches from the input NURBS surface patches.
2. Convert tensor-product Bézier patches to triangular Bézier patches.
3. Linearize the Bézier triangles to form a surface triangulation, from which a tetrahedralization is

generated.
4. Elevate the degree of the tetrahedral elements and move the control points to reproduce the

original NURBS surface.

(a) Bézier rectangle

(b) Bézier triangles

Example: elasticity on a propeller
A wind loading is simulated by
I fixing the interior cylindrical surface
I setting traction t = [0, 0,−10nz] if nz > 0

and zero otherwise.
I setting Young’s modulus E = 105,

Poisson’s ratio ν = 0.3.

CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input: bicubic NURBS boundary
patches

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi
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Free control points
Dependent control points

Free control points pfi (or domain points qfi )

Dependent control points pdi (or domain points qdi )

 

 

Field approximation

?

u ◦G−1

�
�
�
�
�
�
�
�
�
�
�
�
��/

u

0 -1 ξ̂

61
η̂

Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier or-
dinates bijk in {v1,v2,v3}.

Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier ordi-
nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.
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v3 v4

1

(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T
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Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct
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Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(c) Smooth-refine-smooth

IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 3 / 4

1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/

(b) Output: sextic Bézier tetrahedral
mesh (6,431 elements and 798,366
dofs)

Deformed shape

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 5 / 5

(c) Deformed shape

Convergence in C1 space in 3D

Smoothness conditions
Suppose T1 := {v1,v2,v3,v4} and T2 := {v5,v2,v4,v3} are two tetrahedra
sharing the face F := {v2,v3,v4} of 4. Two polynomials f1 and f2 of degree d
on T1 and T2 join together with Cr continuity across the face F if and only if for
m = 0, · · · , r,

b̃mijk =
∑

ν+µ+κ+δ=m

bν,i+µ,k+κ,j+δB
m
νµκδ(v5), ∀ i + j + k = d−m.

Example

A Poisson problem

−∇2u = sin(x)sin(y)

is solved on the following model.

Example of C1 smoothness

A Poisson problem
−∇2u = sin(x)sin(y)

is solved on the following model.

(a) S1(4A) physical mesh (b) S1(4A) parametric mesh
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(a) S1(4A) physical mesh

Example of C1 smoothness

A Poisson problem
−∇2u = sin(x)sin(y)

is solved on the following model.

(a) S1(4A) physical mesh (b) S1(4A) parametric mesh

Xia, S., et al. (UW-Madison) IGA on Triangulations October 8, 2015 31 / 34

(b) S1(4A) parametric mesh

Comparison of C1 and C0 solutions

Compare C1 and C0 solution

(a) Gradient, C0. Non-smooth gradi-
ent across the diagonal (element edge)
can be seen clearly.

(b) Gradient C1. The gradient is
smooth across elements.
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(a) Gradient, C0. Non-smooth gra-
dient across the diagonal (element
edge) is observed.

Compare C1 and C0 solution

(a) Gradient, C0. Non-smooth gradi-
ent across the diagonal (element edge)
can be seen clearly.

(b) Gradient C1. The gradient is
smooth across elements.

Xia, S., et al. (UW-Madison) IGA on Triangulations October 8, 2015 32 / 34

(b) Gradient, C1. The gradient is
smooth across elements.
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(a) Input: bicubic NURBS boundary
patches

?

1

(b) Convert bicubic
Bézier patch to sextic
Bézier triangles

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi
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Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1

v1 v2

v3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier or-
dinates bijk in {v1,v2,v3}.

Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1

v1 v2

v3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier ordi-
nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0

‖∇G‖i−d−1
L∞(G−1)

|f |Hi(T ), ∀f ∈ Hd+1(Ω) Ω̂T̂
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1

Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct

Xia, S., et al. (UW-Madison) Convergence in IGA on Triangulations May 31, 2015 1 / 2

- -Smooth

?
Refine

- -Smooth

Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.
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?Refine

- -Smooth
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(a) Refine-then-smooth
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(b) Smooth-refine-smooth
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(c) Smooth-refine-smooth

IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic
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1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi
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Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Domain points of the Bézier ordi-
nates bijk.

Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier ordi-
nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Construction of Cr basis
Domain parametrization

1

NURBS
boudanry -

Bézier
extraction -

triangulation
-

domain points
generation -

mesh move

1

Smoothness conditions
Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be
Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.
Macro-element spaces
I Polynomial macro-element spaces: d ≥ 4r + 1, e.g., S1

5(T ),S1,2
5 (T ),S2,4

9 (T )

I PS macro-element spaces:

{
d ≥ 9r−1

4 , for r odd, e.g., S1
2(Tps)

d ≥ 9r+4
4 , for r even, e.g., S2,3

5 (Tps)

I CT macro-element spaces:

{
d ≥ 3r, for r odd, e.g., S1

3(Tct)

d ≥ 3r + 1, for r even, e.g., S2,3
7 (Tct)

Construction of Cr basis
I Direct construction in macro-element spaces
1. Directly select a minimum number of free nodes bf according to the connectivity

of the elements
2. Determine the values of other dependent nodes by the continuity condition

bD = CTbf

I Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ )
such that

|f − s|
W k,d+1(Ω̂)

≤ Chd+1−k
T̂

|f |
W d+1,d+1(Ω̂)

, 0 ≤ k ≤ d. [Lai, M.J., et al., 2007]

I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0

‖∇G‖i−d−1
L∞(G−1)

|f |Hi(T ), ∀f ∈ Hd+1(Ω)

Conditions for optimal convergence
I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)
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Refinement procedures
Refine-then-smooth

Refine-then-smooth scheme: S1
5(T )

(a) T 0 (b) T 0
u (c) T 1,2

u

Refine-then-smooth scheme: S1
3(Tct)

↓

(g) T 0
u,u (h) T 0

u,u,ct∗ (i) T 1
u,u,ct
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-Refine -Smooth

1

C0 mesh C0 mesh C1,2 mesh

 

 

Dependent nodes

Free nodes
Nodes violating constraints

C
2 nodes

C
1 nodes

Initial mesh does not have
enough smoothness.
After refinement, some
nodes need to be relocated
to satisfy continuity
constraints, resulting change
of the geometric map.

Smooth-refine-smooth

Smooth-refine-smooth scheme: S1,2
5 (T )

(a) T 0 (b) T 2 (c) T 2
u (d) S1,2

5 (T 2
u)
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-Smooth -Refine -Smooth

1

C0 mesh C2 mesh C2 mesh C1,2 mesh

Example: Poisson problem

(c) Input domain with NURBS boundary. (d) Initial quadratic parametric mesh. (e) Initial quadratic physical mesh. (f) Parametric mesh in S12(T̂ps).

(g) Physical mesh in S12(T̂ps).
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(h) Convergence rates in C0 space.
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(i) Convergence rates in C1 space with
nested refinement sequences.

0.2 0.5 1.0 1.5 3.0
10

−8

10
−6

10
−4

10
−2

10
0

Maximum element size h
max

L
2  E

rr
or

 

 

1
3.0

1
3.0

1
3.0 1

4.1 S
2
1(T

ps
)

S
3
1(T

ct
)

S
5
1(T)

S
5
1,2(T)

(j) Convergence rates in C1 space with
nested refinement sequences.

IGA on triangulations in 3D

Parametrization
1. Extract tensor-product Bézier patches from the input NURBS surface patches.
2. Convert tensor-product Bézier patches to triangular Bézier patches.
3. Linearize the Bézier triangles to form a surface triangulation, from which a tetrahedralization is generated.
4. Elevate the degree of the tetrahedral elements and move the control points to reproduce the original NURBS surface.

CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 2 / 7

(a) Input: bicubic NURBS boundary
patches

?

1

(b) Extract Bézier rectangles and convert
to Bézier triangles

(c) Lienarize the Bézier triangles and tetra-
hedralize surface triangulation

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi
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i
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Free control points
Dependent control points

Free control points pfi (or domain points qfi )

Dependent control points pdi (or domain points qdi )
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Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier or-
dinates bijk in {v1,v2,v3}.

Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier ordi-
nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0
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Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct

Xia, S., et al. (UW-Madison) Convergence in IGA on Triangulations May 31, 2015 1 / 2

- -Smooth

?
Refine

- -Smooth

Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.

Xia, S., et al. (UW-Madison) Convergence in IGA on Triangulations May 31, 2015 2 / 2

?Refine

- -Smooth
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Dependent nodes

Free nodes
Moved dependent nodes
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Elasticity problem 43

L = 4

R = 1
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ν = 0.3

τ = 1
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(a) Refine-then-smooth
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(b) Smooth-refine-smooth
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IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 3 / 4

1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/

(d) Replace boundary and smooth the in-
terior points to reproduce original NURBS
surface (6,431 elements and 798,366
dofs)

Parametrization
1. Extract tensor-product Bézier patches from the input NURBS surface patches.
2. Convert tensor-product Bézier patches to triangular Bézier patches.
3. Linearize the Bézier triangles to form a surface triangulation, from which a tetrahedralization is

generated.
4. Elevate the degree of the tetrahedral elements and move the control points to reproduce the

original NURBS surface.

(a) Bézier rectangle

(b) Bézier triangles

Example: elasticity on a propeller
A wind loading is simulated by
I fixing the interior cylindrical surface
I setting traction t = [0, 0,−10nz] if nz > 0

and zero otherwise.
I setting Young’s modulus E = 105,

Poisson’s ratio ν = 0.3.

CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 2 / 7

(a) Input: bicubic NURBS boundary
patches

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi
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Free control points
Dependent control points

Free control points pfi (or domain points qfi )

Dependent control points pdi (or domain points qdi )
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Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier or-
dinates bijk in {v1,v2,v3}.

Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3
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Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier ordi-
nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0
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Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct

Xia, S., et al. (UW-Madison) Convergence in IGA on Triangulations May 31, 2015 1 / 2

- -Smooth

?Refine

- -Smooth

Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(a) Refine-then-smooth

0.2 0.5 1.0 2.0 4.0

10
−8

10
−6

10
−4

10
−2

Maximum element size h
max

L
2  E

ne
rg

y 
er

ro
r

 

 

1
2.0

1
2.8

1

5.0

S
2
1(T

ps
)

S
3
1(T

ct
)

S
5
1(T)

S
5
1,2(T)

(b) Smooth-refine-smooth
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(c) Smooth-refine-smooth

IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.
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(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 3 / 4

1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/

(b) Output: sextic Bézier tetrahedral
mesh (6,431 elements and 798,366
dofs)

Deformed shape

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 5 / 5

(c) Deformed shape

Convergence in C1 space in 3D

Smoothness conditions
Suppose T1 := {v1,v2,v3,v4} and T2 := {v5,v2,v4,v3} are two tetrahedra
sharing the face F := {v2,v3,v4} of 4. Two polynomials f1 and f2 of degree d
on T1 and T2 join together with Cr continuity across the face F if and only if for
m = 0, · · · , r,

b̃mijk =
∑

ν+µ+κ+δ=m

bν,i+µ,k+κ,j+δB
m
νµκδ(v5), ∀ i + j + k = d−m.

Example

A Poisson problem

−∇2u = sin(x)sin(y)

is solved on the following model.

Example of C1 smoothness

A Poisson problem
−∇2u = sin(x)sin(y)

is solved on the following model.

(a) S1(4A) physical mesh (b) S1(4A) parametric mesh

Xia, S., et al. (UW-Madison) IGA on Triangulations October 8, 2015 31 / 34

(a) S1(4A) physical mesh

Example of C1 smoothness

A Poisson problem
−∇2u = sin(x)sin(y)

is solved on the following model.

(a) S1(4A) physical mesh (b) S1(4A) parametric mesh
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(b) S1(4A) parametric mesh

Comparison of C1 and C0 solutions

Compare C1 and C0 solution

(a) Gradient, C0. Non-smooth gradi-
ent across the diagonal (element edge)
can be seen clearly.

(b) Gradient C1. The gradient is
smooth across elements.

Xia, S., et al. (UW-Madison) IGA on Triangulations October 8, 2015 32 / 34

(a) Gradient, C0. Non-smooth gra-
dient across the diagonal (element
edge) is observed.

Compare C1 and C0 solution

(a) Gradient, C0. Non-smooth gradi-
ent across the diagonal (element edge)
can be seen clearly.

(b) Gradient C1. The gradient is
smooth across elements.

Xia, S., et al. (UW-Madison) IGA on Triangulations October 8, 2015 32 / 34

(b) Gradient, C1. The gradient is
smooth across elements.
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Conclusion
Only elements that achieved optimal convergence rates on models with complex topology
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(c) Lienarize the Bézier trian-
gles and tetrahedralize the sur-
face triangulation

Isogeometric Analysis on Triangulations
Songtao Xia, Xiaoping Qian

Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706

Motivation

Exact representation of arbitrary topology
High order of smoothness
Automatic parametrization
Ease of local refinement

Illustration of IGA on triangulations in 2D

Physical mesh with
control points pi = pfi ∪ pdi

Parametric mesh with
domain points qi = qfi ∪ qdi

�

G =
∑

i

pfi ψi

Geometrical map

-

G−1
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Free control points
Dependent control points

Free control points pfi (or domain points qfi )

Dependent control points pdi (or domain points qdi )

 

 

Field approximation
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η̂

Integration on parent element

Basis functions ψ = Cφ

1

Bivariate basis function

Bijk,d(ξ) =
d!

i!j!k!
uivjwk

Triangular Bézier patch:

b(ξ) =
∑
i+j+k=dpijkBijk,d(ξ)

Triangular Bézier Spline (TBS)

f (ξ) =
∑
i+j+k=d bijkBijk,d(ξ)Cr constraints on triangulations

Cr constraints on triangulations

b3,0,0 b2,1,0 b1,2,0 b0,3,0

b2,0,1 b1,1,1 b0,2,1

b1,0,2 b0,1,2

b0,0,3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1

v1 v2

v3

Songtao Xia (IIT) IGA using rTBS August 26, 2014 1 / 1(a) Associated domain points of the Bézier or-
dinates bijk in {v1,v2,v3}.

Cr constraints on triangulations

Cr constraints on triangulations
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nates bijk in {v1,v2,v3}.

(b) Triangular Bézier patch b(ξ).

Figure 1: Domain points and triangular Bézier patch.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on
Bézier ordinates.

(b) Two Bézier patches with C1 continuity.

Figure 2: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Triangular Bézier patch b(ξ).

Conditions for smooth joins of polynomials

Let ξ be the barycentric coordinates of v4 w.r.t. {v1,v2,v3}, then two patches will be Cr continuous iff

b̃ρ,j,k =
∑

µ+ν+κ=ρ

bµ,k+ν,j+κB
ρ
µνκ(v4)

for all ρ ≤ r and ρ + j + k = d.

v1 v2

v3 v4

1

(a) Two domain triangles with C1 constraints on Bézier ordi-
nates.

(a) Two Bézier patches with C1 continuity.

Figure 1: Triangular Bézier patches with C1 continuity. The dependent
nodes (white solids) are determined by the free nodes (red solids) through
the continuity constraints. The shaded areas indicate the triangles with
shared edges where the constraints are imposed.

1

(b) Two Bézier patches with C1 continuity.

Construction of Cr basis

Direct construction
1. Directly select a minimum number of free nodes bf according to the connectivity of the elements
2. Determine the values of other dependent nodes by the continuity condition bD = CTbf

Gaussian elimination
1. Apply the continuity condition on all adjoining element pairs AbD = 0
2. Get rid of redundant continuity constraints by Gaussian elimination bD = CTbf

Then
I f = bTDφ(ξ) = bTfCφ(ξ) = bTfψ(ξ)

I Cr basis: ψ(ξ) = Cφ(ξ)

Conditions for optimal convergence
Approximation in rTBS space
I Parametric domain

If there exists a space Srd(T̂ ) with a set of stable local basis, then for every
f ∈ W k,d+1, there exists a spline s ∈ Srd(T̂ ) such that

|f − s|W k,d+1(Ω̂) ≤ Chd+1−k
T̂

|f |W d+1,d+1(Ω̂), 0 ≤ k ≤ d.

[Lai, M.J., et al., 2007 ]
I Physical domain

|f − ΠUf |Hk(T ) ≤ Cwh
d+1−k
T

d+1∑

i=0

‖∇G‖i−d−1
L∞(G−1)

|f |Hi(T ), ∀f ∈ Hd+1(Ω) Ω̂T̂

6

G

ΩT
-ΠUf R

�
�
�
�
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���

ΠS(f ◦G)

1

Conditions for optimal convergence

I Spaces with stable local basis: all C0 spaces and Cr, Cr,ρ macro-element spaces
I Same geometric map G during refinement G(ξ) =

∑m
i p

f
i ψi(ξ) =

∑n
j pjφj(ξ)

Refine procedureRefine-then-smooth: S1
3(Tct)Refine-then-smooth scheme: S1

3(Tct)

(a) T 0 (b) T 0
ct⇤ (c) T 1

ct

(d) T 0
u (e) T 0

u,ct⇤ (f) T 1
u,ct
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- -Smooth

?Refine

- -Smooth

Refine-then-smooth scheme: S1
3(Tct)

(g) T 0
u,u (h) T 0

u,u,ct⇤ (i) T 1
u,u,ct

Overlapped mesh sequence in S1
3 (Tct) without pre-refinement smooth
map.
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?Refine

- -Smooth

1

 

 

Dependent nodes

Free nodes
Moved dependent nodes

1
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Elasticity problem 43

L = 4

R = 1

E = 105

ν = 0.3

τ = 1

symmetric

exact traction
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Figure 4.4. The plate-hole problem statement.

guide adaptive refinement by refining the element by the Rivara method [25] which

contributes the most to our measure.

rTBS discretization and mesh smoothing

For a given element type, the analysis accuracy and convergence rate depend on

element quality. In this thesis, thus far, we have focused on presenting a set of steps

for establishing an rTBS-based geometric map G(ξ) that can exactly recover the

given NURBS boundary. However, the interior of the geometric map that directly

affects the rTBS element quality has not been explicitly addressed. We here briefly

describe how we use smoothing to improve the mesh quality. A formal study of mesh

quality and convergence rate is outside of the scope of our work.

The factors that can be adjusted to affect mesh quality include the internal

control points of G0 in Step 1, the free internal control points for G, and the internal

and corner boundary vertex positions of T in Step 2. For the internal control points

P0I of G0 we apply Laplacian smoothing on the Bézier control net of G0. The free

internal control points PI corresponding to internal domain points in the MDSMd,T

(a) Problem description (b) Initial parametric mesh. (c) Inital physical mesh.

(a) S1
2(Tps). (b) S1

3(Tct). (c) S1,2
5 (T ). (d) S2,3

5 (Tps).
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(a) Refine-then-smooth
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(b) Smooth-refine-smooth
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(c) Smooth-refine-smooth

IGA on triangulation in 3D
CAD model

(a) A propeller represented by 24 bi-cubic
NURBS patches.

(b) A closeup of the NURBS surface mesh.

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 2 / 7

(a) Input NURBS boundary patches (b) Single NURBS patch (c) Extracted Bézier patches (d) Converted Bézier triangles

(a) Rational Bézier tetrahedral mesh of
degree 6.

Rational Bézier tetrahedral mesh (with control points)

(a) Parametric mesh, quartic (b) Parametric mesh, quartic

Songtao Xia (UW-Madison) IGA on triangulations in 3D May 5, 2015 3 / 4

1

(b) A closeup of the surface. (c) A physical element sample. (d) Corresponding parametric element.

Conclusion

Only elements that achieved optimal convergence rates on models with complex topology

Department of Mechanical Engineering, University of Wisconsin-Madison Computational Design & Manufacturing Lab http://cdm.me.wisc.edu/

(d) Replace boundary and
smooth the interior control
points

Example: elasticity on a propeller
A wind loading is simulated by
I fixing the interior cylindrical surface
I setting traction t = [0, 0,−10nz] if nz > 0 and zero

otherwise.
I setting Young’s modulus E = 105, Poisson’s ratio
ν = 0.3.

Mesh data
I 6,431 elements and 798,366 dofs

1

(a) Element samples

Deformed shape
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(b) Deformed shape

Optimal convergence in Cr space in 3D
Smoothness conditions
Suppose T1 := {v1,v2,v3,v4} and T2 := {v5,v2,v4,v3} are two
tetrahedra sharing the face F := {v2,v3,v4} of 4. Two polynomials
f1 and f2 of degree d on T1 and T2 join together with Cr continuity
across the face F if and only if for m = 0, · · · , r,

b̃mijk =
∑

ν+µ+κ+δ=m

bν,i+µ,k+κ,j+δB
m
νµκδ(v5), ∀ i + j + k = d−m.

C1 macro-element space with Alfeld split

S1(4A) := {s ∈ S1
5(4A) : s ∈ C2(v),∀v ∈ V , s ∈ C4(v

T
),∀T ∈ 4}

(a) C1 constraints

C1 macro-element space with Alfeld split

Given a tetrahedron T := v1, v2, v3, v4, let vT := (v1 + v2 + v3 + v4)/4
be the barycenter of T . Then we define the Alfeld split TA of T to
consist of the four subtetrahedra obtained by connecting vT to each of
the vertices of T .

S1(4A) := {s ∈ S1
5 (4A) : s ∈ C2(v),∀v ∈ V, s ∈ C4(vT ),∀T ∈ 4},

where V, T are the vertices and tetrahedra in 4.
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(b) Alfeld split

Example: Poisson problem

Example of C1 smoothness

A Poisson problem
−∇2u = sin(x)sin(y)

is solved on the following model.

(a) S1(4A) physical mesh (b) S1(4A) parametric mesh
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(a) S1(4A) physical mesh

Example of C1 smoothness

A Poisson problem
−∇2u = sin(x)sin(y)

is solved on the following model.

(a) S1(4A) physical mesh (b) S1(4A) parametric mesh
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(b) S1(4A) parametric mesh

Compare C1 and C0 solution

(a) Gradient, C0. Non-smooth gradi-
ent across the diagonal (element edge)
can be seen clearly.

(b) Gradient C1. The gradient is
smooth across elements.
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(c) Non-smooth gradient
across the diagonal (ele-
ment edge) with C0 ele-
ments.

Compare C1 and C0 solution

(a) Gradient, C0. Non-smooth gradi-
ent across the diagonal (element edge)
can be seen clearly.

(b) Gradient C1. The gradient is
smooth across elements.
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(d) Smooth gradient
across elements with C1

elements.
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(e) Optimal convergence in
C1 space.

Conclusion
A smooth-refine-smooth scheme is developed. It is the only scheme that has demonstrated optimal
convergence rates for Cr elements involving extraordinary nodes.
The parametrization can be fully automated for complex domain. Local refinement can also be easily
implemented.
A prototype software of isogeometric analysis based on rational triangular Bézier splines (rTBS) is
developed. Any form of Cr Bézier elements can be used.
The prototype software has been successfully applied for both 2D and 3D problems.
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