Skip to main content

Kim Paul

Kim Paul at Clemson University, Clemson SCAssociate Professor

Email:  kpaul@clemson.edu
Website:  http://paullab.org
Office: 864-656-1489

Education:
Biology of Parasitism Summer Course, Woods Hole Marine Biological Laboratory, 1998
Ph.D., Molecular Biology, Princeton University, 1998
B.A.,  Biology, Northwestern University, 1991

Trypanosomes are single-celled eukaryotes that comprise both free-living and pathogenic species. We are currently studying three species of trypanosomes that present an array of life histories and host-pathogen interactions: Trypanosoma brucei, a mammalian pathogen transmitted by Tsetse flies that causes African Sleeping Sickness, Crithidia fasciculata, a mosquito pathogen, and Bodo saltans, a free-living trypanosome. My lab is interested in how trypanosomes modulate the metabolism of a key nutrient class, fatty acids, in response to its environment and during progression through its life cycle. Fatty acids are not only an important structural component of membranes and a source of energy, but in the case of T. brucei at least, they also are implicated in immune evasion.

Relatively little is known about fatty acid metabolism in these evolutionarily ancient eukaryotes. Indeed, what we have learned about fatty acid synthesis in these organisms suggest that trypanosome fatty acid metabolic pathways may be quite diverged from higher eukaryotes, and therefore may be valuable for the identification of potential new drug targets for Trypanosome diseases, for improving our understanding of how basic metabolic processes have developed and evolved over time, and may contribute to a better understanding of these pathways as they function in mammals.

Fatty Acid MetabolismCurrently, we are using a variety of genetic, biochemical, and cell biological tools to pursue questions in four main research areas:

(1) How do trypanosomes regulate fatty acid synthesis in response to the needs of the parasite and the environmental lipid supply?
(2) What is the role of fatty acid metabolism in pathogenesis and immune evasion in parasitic trypanosomes?
(3) What are the molecular mechanisms governing fatty acid uptake in trypanosomes?
(4) What are the components of the trypanosome lipid droplet machinery?

Publications:

Goldston, A.M., Sharma, A.I., Paul, K.S., and Engman, D.M. (2014) Acylation in Trypanosomatids: An Essential Process and Potential Drug Target. Trends in Parasitology 30(7): 350-360.

Parmenter, K.J., Vigueira, P.A., Morlock, C.K., Paul, K.S., and Childress, M.J. (2013) “Seasonal Prevalence of Hematodinium sp. Infections of Blue Crabs in Three South Carolina (USA) rivers.” Estuaries and Coasts 6(1): 174-191.