Learning Objectives

- Explain how position, velocity and acceleration are defined for curvilinear motion.
- Solve projectile motion problems.

Curvilinear Motion

- Particle moves along a curved path.
- The particle's location is measured by a position vector, \mathbf{r}.
- The velocity is $v=\frac{d r}{d t}$, perpendicular to the path.
- Speed is $v=\frac{d s}{d t}$, where s is the curve length.
- Acceleration is $a=\frac{d v}{d t}$. Since the velocity is changing direction, the derivative \mathbf{a} is perpendicular to change in \mathbf{v}, so it isn't perpendicular to the path.
- In a fixed frame of reference, $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, so $v=\frac{d r}{d t}=v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}$, where $v_{x}=x^{\prime}$,

$$
\begin{aligned}
& v_{y}=y^{\prime} \text { and } v_{z}=z^{\prime} \text {, and } a=\frac{d v}{d t}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k} \text {, where } a_{x}=v_{x}^{\prime}=x^{\prime \prime}, a_{y}=v_{y}^{\prime}=y^{\prime \prime} \text { and } \\
& a_{z}=v_{z}^{\prime}=z^{\prime \prime} ; \quad a^{2}=a_{x}^{2}+a_{y}^{2}+a_{z}^{2} .
\end{aligned}
$$

Projectile Motion

- The most common type of curvilinear motion.
- Gravity accelerates particles in the y-direction, so using constant acceleration equations:

$$
v=v_{0}+a t
$$

$$
s=s_{0}+v_{0} t+1 / 2 a t^{2}
$$

$$
v^{2}=v_{0}^{2}+2 a\left(s-s_{0}\right)
$$

(only 2 of the 3 are independent of each other)

- No force accelerates the particle horizontally, so the horizontal velocity remains constant. ($\left.v_{0}\right)_{x}=v_{x}$

Ex \#1 The fireman standing on the ladder directs the flow of water from his hose to the fire at B. Determine the velocity of the water at A if it is observed that the hose is held at $\theta=20^{\circ}$.

Ex \#2 Small packages traveling on the conveyor belt fall off into a 1-m-long loading car. If the conveyor is running at a constant speed of $v_{C}=2 \mathrm{~m} / \mathrm{s}$, determine the smallest and largest distance R at which the end A of the car may be placed from the conveyor so that the packages enter the car.

