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An analysis of the radial distribution of charges in liquid jets is presented. Two cases where

considered: (1) when the charges are uniformly distributed through the jet cross-section but are

allowed to concentrate at the jet surface with time; (2) when the charges reach a steady state where

the Coulomb repulsion and Brownian mixing are counterbalanced keeping the charges inside the

jet. Using the first model, we showed that the charge adsorption in nonpolar fluids occurs much

faster than that in polar fluids. This provides the basis for the consideration of the second model ap-

plicable for polar liquids. We examined this case and found that a steady state does exist, but the

concentration of charges is limited from above by a critical concentration inversely proportional to

the square of the jet radius. It was shown that above this critical concentration, the charges should

accumulate at the jet surface producing an infinitely large surface charge. Using this analysis, we

suggest the classification of different regimes of electrospinning when the jets are mostly carrying

the volume or surface charges. VC 2011 American Institute of Physics. [doi:10.1063/1.3671629]

I. INTRODUCTION

Recent progress in nanofiber formation by electrostatic

spinning, known as electrospinning, has significantly advanced

different fields of materials science and engineering. Electro-

spun nanofibers find applications as bio-materials for tissue en-

gineering and scaffolds,1–3 smart textiles,4–6 and catalysts and

many others.7–10 Electrospinning significantly enriched the

library of spinnable polymers including some polymers that

cannot form fibers by conventional methods.7–10

In electrospinning, a polymer solution is electrically

charged by high voltage to produce cone-like protuberances

at the liquid-air interface. Increasing voltage further, one

reaches a moment when the electrostatic force exceeds the

surface tension, and a protuberance transforms into a spike

emanating a jet.7–11 This formation of tiny threads was dis-

covered by George Mathias Bose in 1745. Since Boys’ time,

the effect was actively used to spin fine fibers.12,13 Typically,

the diameter of electrospun fibers is measured in hundreds of

nanometers, and it is hard to reduce this number down to

tenths of nanometers. The charge distribution in the jet is an

important factor controlling the jet stability. In this paper, we

analyze the mechanism of jet charging, leaving aside the

hydrodynamic features of jet thinning that have been exten-

sively discussed and reviewed recently.8–14

II. ORIGIN OF CHARGES IN ELECTRICALLY
GENERATED JETS

The most popular model of charge carrying liquid is the

Taylor–Melcher model of leaky dielectrics.15,16 One calls

the dielectric “leaky” because it permits some free charges to

be present in the material when the field is turned on. In

many cases, the origin of these charges is not specified: For

example, if the liquid is placed between two electrodes, the

charges of opposite sign can migrate from one electrode to

the other generating a nonzero current. But there is no need

to know the number of free charge carriers: Omh’s law com-

pletely describes this current. One can find one more

assumption in the model of leaky dielectrics: The total

charge is often assumed zero.15,16 This neutrality condition

guarantees that the material stays non-charged if the field is

turned off. The Taylor–Melcher phenomenological model is

very convenient and explains many practically important

flows, in particular, it suggests a scenario of electrohydrody-

namic tip streaming and jetting.17

In electrospinning, depending on the electrode configura-

tion, a jet of a polymer solution is formed either at a syringe

needle or at the roller-electrode.7,8,11 When a liquid is subject

to a sufficiently strong electric field, the conditions at the liq-

uid/electrode interface become favorable for the detachment

of charges from the electrode. Depending on the electrode po-

larity, the liquid tends to strip off either metal ions or elec-

trons. One can visually see that the produced nanofibers are

charged: Even after few hours after spinning, the fibers can

be easily manipulated by applying electric field.

These observations suggest that the free charges can be

present in the jet and, because the jet surface does not touch

any electrode, it is naturally to question where these charges

go. There are two possible scenarios of charge distribution

through the jet cross-section: The charges can sit at the jet

surface or they can be present inside the jet being distributed

through the jet cross-section. The first scenario of surface

charged jets is most likely realized in non-polar solvents hav-

ing a low dielectric constant. The second scenario of space

charged jets is expected to occur in polar solvents having a

high dielectric constant. In the following sections, we analyze

these hypotheses based on the general model of liquid dielec-

trics carrying free charges.18–20 We assume that the charge is

initially distributed uniformly over the liquid volume and

study how it decreases with time, provided that the charges

are subject to the Coulomb repulsion. In this formulation, we

restrict ourselves to the physical constraint that the chargea)Electronic mail: kkornev@clemson.edu.
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density variation should follow the Gauss law of electro-

statics. To examine the second scenario of space charged jets,

we introduce the Brownian diffusion that opposes the Cou-

lomb repulsion between charges and allows them to wonder

randomly through the jet cross-section. Using this model, we

obtain the conditions when the space charge through the jet

cross-section is distributed almost uniformly.

III. DISTRIBUTION OF FREE CHARGES IN LIQUID
JETS

In this section, we analyze the characteristic features of

uniformly charged fluids. The charged jet is modeled as a

straight liquid cylinder of radius R subject to an external elec-

tric field E0 directed parallel to the jet axis. The fluid velocity

is constant, and it does not change with time. In the first

moment, the density of a unipolar charge in the jet is set Q0.

We assume that the charges are repelled from the jet core mov-

ing toward the jet surface. We consider only time-dependent

variation of the charge density Q(t). For the description of the

charge distribution in the jet, one can use the continuum model

of charged fluids.18–20 Within this model, the charge transport

is described by the continuity equation :19,20

@Q

@t
þr � QJð Þ ¼ 0; (1)

with the flux J taken in the form

J ¼ vþ nE� Dr ln Q; (2)

where v is the fluid velocity, E is the electrostatic field inside

the jet, D¼ kBTn/e, is the diffusion coefficient, kB is the

Boltzmann constant, T is the temperature, e is the charge of

a free carrier, and n is its mobility. The first term in Eq. (2)

describes the advection of free carriers; the second term

describes the forced movement of free carriers in electric

field. The third term corresponds to the Brownian diffusion

of free charges caused by the gradient of the chemical poten-

tial. It is assumed that the concentration of charges is small

so that the chemical potential takes on the form of the chemi-

cal potential of an ideal gas. The charge-to-charge interac-

tions are accounted for through local electric filed E, which

is dependent on the charge density. The third term in Eq. (2)

plays no role for uniformly charged jets, hence in this

section, it can be omitted. Assuming that the liquid is

incompressible,

r � v ¼ 0; (3)

and taking into account the Poisson equation for the electric

field

r � E ¼ Q=e0e; (4)

where e0 is the permittivity of vacuum, e is the dielectric con-

stant (relative permittivity) of the liquid, we obtain from

Eqs. (1) to (4),

@Q

@t
þ n

e0e
Q2 ¼ 0: (5)

Equation (5) has the solution

QðtÞ ¼ Q0

1þ nQ0t

e0e

: (6)

Here Q0 is the initial charge density. To find the charge col-

lected at the jet surface at each moment of time, we substi-

tute Eq. (6) in the Poisson Eq. (4). Accounting for the

boundary condition for the axial component of the field,

Ejj ¼E0, we see that the axial component of electric field in

the jet is constant. However, the radial component of the

field is not constant. This 2D electric field is a solution to the

Poisson equation, ð1=rÞdðrE?Þ=dr ¼ QðtÞ=ðe0eÞ. Integrating

this equation, one obtains the radial component of electric

field inside the jet as

E? ¼
QðtÞr
2e0e

ðr < RÞ: (7)

Due to the conservation of charges, the radial component of

the field outside the jet is written as

E? ¼
Q0R2

2e0r
ðr > RÞ: (8)

These two equations [Eqs. (7) and (8)] allow one to find the

charge accumulated at the jet surface at any moment of time:X
¼ e0E?jr¼Rþ0 � ee0E?jr¼R�0 ¼ Q0R=2� Q tð ÞR=2

¼ nQ2
0Rt

2e0e
1þ nQ0t

e0e

� ��1

: (9)

Equation (9) suggests that at the first moments of time,

t! 0, the charge concentrates at the surface with almost

constant rate, dR=dt � nQ2
0R=ð2e0eÞ. As time tends to infin-

ity, the surface charge density approaches its maximum

value, R1 ¼ Q0R=2. This limiting case implies that the

charge that was initially distributed within the jet of length

L, will be completely adsorbed on the jet surface, 2pRLR1
¼ pR2LQ0.

For the practical applications of Eqs. (6) and (9), it is

convenient to express time t in terms of the jet flow rate, q,

say measured in g/s. We take a piece of jet with fluid density

q and radius R. The time needed for a particle entering the

chosen piece of the jet to exit at the position x¼ L is esti-

mated as t¼L(qpR2)/q. Measuring length L in the jet radii,

L¼ aR, we rewrite Eq. (6) as

Qexit ¼
Q0

1þ nQ0q
e0e

paR3

q

: (10)

As follows from Eq. (10), the greater the flow rate, the longer

the jet maintains its initial charge density Q0. Decreasing the

flow rate, one increases the probability for the charges to

concentrate at the jet surface. Hence the volumetric charge

density drops faster as the flow rate slows down. As a charac-

teristic of the rate of charge adsorption at the jet surface, it is
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convenient to introduce flow rate q2 at which the charge den-

sity reduces in two times, Q2¼Q0/2 when the given slice

travels the distance L¼ aR. As follows from Eq. (1), this cri-

terion reads:

q2 ¼
pnQ0q

e0e
aR3: (11)

For example, taking the following parameters as the typical

for electrospinning: Q0¼ 1 C m�3, n¼ 10�6 m2V�1s�1, q¼
1000 kg m�3, e¼ 2, we have for the factor

pnQ0q
e0e

¼ 1:774 � 108 kg

s
: (12)

In Fig. 1, we plot q2 as a function of the jet radius measured

in hundreds of micrometers. If the experimental flow rate

corresponds to a region above any particular curve in Fig. 1,

the charge density at the jet exit is expected to be smaller

than Q0 but greater than Q0/2. Below these curves, the

charge density is always smaller than Q0/2.

As follows from Eq. (9), the rate of charge adsorption

on the jet surface significantly depends on the dielectric con-

stant of the liquid: the greater the dielectric constant, the

smaller the adsorption rate is. In nonpolar liquids, where the

dielectric constant is of the order of one, the repulsion of

charges is strong, hence their rate of adsorption on the sur-

face is fast. In polar liquids, where the dielectric constant is

ten or hundred times greater than that of vacuum, the electric

field is significantly screened by the solvent. Hence the

charges weaker repel each other thus significantly decreasing

their rate of adsorption on the jet surface.

IV. LIMITING BROWNIAN MIXING OF CHARGES
IN LIQUID JETS

In the previous section, we ignored the effect of the

Brownian diffusion assuming that the charges are distributed

uniformly through the jet. On the other hand, the Brownian

diffusion stabilizes the space charges preventing them to

escape from the jet core to the surface. Therefore, it is in-

structive to examine the case when the charges are not

uniformly distributed through the jet cross-section and the

Brownian diffusion is important. In applications to nanofiber

electrospinning where the liquid jets are very long, it is im-

portant to understand whether the space charge can reach a

steady state when the Coulomb repulsion of charges is coun-

terbalanced by the Brownian mixing.

In a steady state flow, the conservation of charges reads

r � QJð Þ ¼ 0. Assume that at the spatial scale comparable

with the jet diameter, neither the jet diameter nor the charge

change appreciably along the jet axis. Therefore, we can say

that the axial component of the flux is constant, Jjj ¼ vjj
þ nEjj ¼ const. The radial component of the flux is zero,

Jr ¼ 0 ¼ nEr � Dd ln Qð Þ=dr. Introducing the field potential

as Er ¼ �d/�=dr, one can integrate the resulting equation

nd/� þ Dd ln Qð Þ½ �=dr ¼ 0 to obtain the Boltzmann distribu-

tion for the charge density:

QV ¼ ce exp �e/�=kTð Þ; (13)

where /� is the potential inside the liquid column, c is the

charge concentration at the column axis, and e is the charge

of the charge carrier. Substituting Eq. (13) into the Poisson

Eq. (4), we obtain the Poisson-Boltzmann equation as

� 1

r

d

dr
r

d/�
dr

� �
¼ ce

e0e
exp �e/�=kTð Þ: (14)

Assuming that the air outside the jet is not charged, the exter-

nal electric potential must satisfy the equation

1

r

d

dr
r

d/þ
dr

� �
¼ 0: (15)

The boundary conditions for Eqs. (14) and (15) are (i) the

continuity of the potential and the normal component of dis-

placement vector at the jet surface, r¼R:

/þ ¼ /�;
d/þ
dr
¼ e

d/�
dr

; (16)

(ii) the boundary condition for the potentials at the jet axis,

and (iii) at infinity. Because the reference potential can be

arbitrarily chosen, we set the zero potential at the jet axis,

/�ð0Þ ¼ 0: (17)

The potential at infinity must behave logarithmically as fol-

lows from the Gauss law,

/þðrÞ ! ln r; r !1: (18)

Thus, Eqs. (14) to (18) constitute the mathematical model of

charge distribution in the jet. It is convenient to introduce the

dimensionless potential and spatial variable as

� /6 ! U6kT=e; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTee0=ce2

p
X ¼ lDX: (19)

In other words, we measure the distances in the Debye

lengths, lD. With the new unknown and variable, the equa-

tion for the internal field takes the form

1

X

d

dX
X

dU�
dX

� �
¼ exp U�ð Þ: (20)

FIG. 1. (Color online) The critical flow rate measured in micrograms per

second as a function of the jet radius measured in hundreds of micromeers.

The lines separate the regions where the charge density reduces twice at the

jet length L¼ aR.
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The outside field is described by the Laplace Eq. (15). As

shown in the Appendix, the potential inside the jet takes the

form

U� ¼ � ln ðr=lD

ffiffiffi
8
p
Þ2 � 1

� �2

: (21)

The external potential is described as

Uþ ¼ D ln r=Rð Þ þ const:

D ¼ �4e
R

lD
ffiffiffi
8
p

� �2	 R

lD

ffiffiffi
8
p

� �2

�1

" #
: (22)

And finally, the charge density distribution takes the follow-

ing form21

QV ¼ ce 1� r2

8l2
D

� ��2

: (23)

Concentration of the charges at the column axis is still

unknown. We can express it through the average charge den-

sity Q (number of charges per unit volume) as

Q ¼ 2

R2

ðR

0

rQV rð Þdr ¼ ce

1� R2=8l2D
; or

c ¼ Q=eð Þ
1þ R2eQ= 8kTee0ð Þ :

(24)

In Fig. 2, we plot the concentration of charges as a function

of jet radius and the distribution of charges in the jet. As

seen, the density profile is flattened as the jet radius

decreases. If the jet radius is smaller than the Debye length

(submicrometer jets in the example shown in Fig. 2), the

density is almost uniform over the jet cross-section. This uni-

formity is a manifestation of intensive interactions between

the surface and core charges and rigorous Brownian mixing.

As the radius increases and becomes comparable and greater

than the Debye length, the screening effect starts to play a

role leading to the weakened interactions between the core

and surface charges. The charges are pushed to the surface

and concentrate there.

An analysis of Eqs.(23) and (24) reveals very interesting

criterion of the applicability of the model with spatially dis-

tributed charges: to make this model work the Debye length

cannot be smaller than

lD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTee0=ce2

p
>

ffiffiffi
8
p

R: (25)

As this criterion fails, the charge density at the jet surface

will tend to infinity. The Poisson-Boltzmann model cannot

predict what will happen with the jet in this limiting case.

One can propose at least two scenarios: the Coulomb explo-

sion and run-off charge from the jet surface into surrounding

gas. The analysis of these cases is beyond the scope of this

paper.

Thus two models lead to the same conclusion: the jets

formed from polar and non-polar liquids will tend to accu-

mulate the charges at the jet surface. If the jet radius is

greater than R >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kTee0=8ce2

p
, one can say that the jet will

carry the charge mostly at its surface. Writing criterion (25)

in terms of the charge density,

ce < kTee0= 8 R2e

 �

; (26)

we can consider this condition as a criterion for the forma-

tion of jets with spatially distributed charges. For example,

for an oil-based jet (e ¼ 2) that is formed at room tempera-

ture T¼ 300 K, criterion (26) suggests that the jet with the

radius R¼ 1 lm will carry charges inside the jet core if the

charge density will be smaller than 0.06 C/m3 corresponding

to the charge concentration smaller than c ¼ 3:5 � 1017 m�3.

If the charge concentration is greater than this value, the jet

can be considered surface charged.

One expects that the charge will be distributed almost

uniformly over the jet cross-section if the jet radius is much

smaller than the Debye length.

FIG. 2. (Color online) (a) Concentration

of univalent charges at the jet axis as a

function of the jet radius for the average

charge density Q¼ 1 C/m3 and the jet

dielectric constant e ¼ 2; (b) the charge

distribution in jets with different radii.
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V. CONCLUSION

In this paper, we analyze the radial distribution of charges

in jets supported by an external electric field. The field is

directed along the jet axis, but the charges in the jet are

allowed to move in the cross-section plane. Two cases where

considered: (1) in the first case, the charges are uniformly dis-

tributed through the jet cross-section but move to the jet sur-

face and concentrate there with time; (2) in the second case,

the charge distribution is assumed time independent. We

showed that the charge adsorption on the surfaces of nonpolar

jets occurs much faster than that in polar jets. This effect is

explained by significant charge screening in polar liquids

leading to a weakened repulsion of charges. This weakening

effect poses a natural question on whether the charge distribu-

tion could reach a steady state when the Brownian mixing of

charges will be sufficient to keep the charges inside the jet.

We examined this second model and found that a steady state

does exist, but the concentration of charges is limited from

above by the critical value ccr ¼ kTee0= 8R2e2ð Þ: Above this

critical concentration, the charges move to the jet surface.

Thus the critical charge density separates two different

regimes of jet formation. If c< ccr, one expects to have the

jets carrying the charges in the core. If c> ccr, the charges

will be mostly concentrated at the jet surface. The Poisson-

Boltzmann model cannot predict what will happen with the

jet when the surface charge tends to infinity. One can propose

at least two scenarios: the Coulomb explosion and run-off

charge from the jet surface into surrounding gas. The analysis

of these cases deserves a special attention.

We believe that these notes provide new insight on the

charging process of liquid jets and will be useful for the anal-

ysis of electrospinning process.
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APPENDIX

To find the solution to Eq. (17), we put the substitution

u ¼ U� þ 2 ln X; 1 ¼ ln X:

Then Eq. (17) is rewritten as

d2u

d12
¼ eu: (A1)

Rewriting Eq. (A1) as a dynamic system

du

d1
¼ v (A2)

dv

d1
¼ eu (A3)

we find the first integral as

v2=2 ¼ eu þ C: (A4)

Demanding the finiteness of the field at the column axis,

x¼ 0, we obtain the constant C as

C ¼ 2: (A5)

Another integration gives the solution in the form (which

was obtained by a different method by Weymann21)

U� ¼ ln
8G2

G2X2 � 1ð Þ2
; (A6)

with a constant G. The outside field can be found by solving

the Laplace equation to give

Uþ ¼ D ln X=X0ð Þ þ C1: (A7)

Here X0 ¼ R=lD is the column radius measured in the Debye

lengths. The continuity of the displacement vector gives the

relation between the constants D and G as

e
dU�
dX
¼ D

X
as X ¼ X0; (A8)

or, substituting (A6), one obtains

D ¼ � 4eX2
0G2

X2
0G2 � 1

: (A9)

In each potential, the integration constants G and c can be

specified by choosing the reference potentials. Requiring that

the internal potential is equal to zero at the jet axis, one has

from Eq. (A6): G2¼ 1/8. The second continuity condition

for the potential at X¼X0 gives

C1 ¼ �2 ln X0=
ffiffiffi
8
p� �2

�1

� �
: (A10)
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