

Science of Composting

Greg Evanylo Professor and Extension Specialist gevanylo@vt.edu

Confined Animal Manure Managers Workshop January 16, 2020

The Composting Process

Why Does Composting Happen?

- Microbes consume feedstocks to obtain energy & nutrients
- Their activity creates heat
- Heat gets trapped in pile
 Accelerates process

Bacteria

- Single-celled rod (bacilli), sphere (cocci) or spiral (spirilla)
- 80-90% of organisms in compost
- Earliest and fastest decomposers
 - Most nutritionally diverse
 - tolerant of low oxygen

Actinomycetes

- Classified as bacteria, but resemble & function like fungi
- Earthy soil smell
- Degrade complex organic compounds like cellulose and lignin commonly found in woody stems and newspaper, and chiten and proteins via powerful enzymes

- Appear during thermophilic and cooler curing phase
- Form long, thread-like branched filaments that look like gray spider webs

Fungi

- Include molds and yeasts
- More tolerant of low moisture and pH, but less tolerant of low oxygen than bacteria
- Function during mesophilic and thermophilic phases
- Most efficient woody decomposers

Progression of Carbon Decomposition During Composting

Sugars, starches – First to be decomposed (mesophilic bacteria); generate most metabolic activity (hi heat and CO₂)

> Proteins, fats – Decomposed by thermophilic bacteria and actinomycetes; generate med heat and CO₂

> > Cellulose, hemicellulose – Most resistant C forms decomposed by actinomycetes and fungi

The Key Process Variables for Control of the Composting Process

- 1. Initial feedstock properties
- 2. Pile moisture
- 3. Pile aeration
- 4. Pile shape and size
- 5. Pile temperature
- 6. Composting retention time

1. Feedstock Properties

- Carbon = energy source
- Nitrogen = protein source

Carbon to Nitrogen Ratio (C:N)

- Ideal starting range: 25:1 35:1
- High C:N
 - > 40:1 slows composting process (N limited)
- Low C:N
 - < 20:1 results in net N release (as ammonia)

C:N Affects Composting Rate

Particle Size and Shape

- Decomposition happens on surface
- Smaller particles = more surface area
- Very fine particles prevent air flow
- Rigid particles provide structure & help aerate

Adapted from T. Richard

Particle Size and Porosity Effects on Aeration

Loosely packed, well structured

Tightly packed, uniform particle size

Loosely packed, uniform particle size

Tightly packed, mixed particle sizes

Particle Size Affects Composting Rate

Bulk Density

- Measure of mass (weight) per unit volume
 - pounds/cubic foot, tons/cubic yard, kg/L
 - Examples
 - Water: 62 lb/ft³, 1.44 ton/yd³
 - Topsoil (dry): ~75 lb/ft³, ~1.73 ton/yd³
 - Compost : ~44 lb/ft³, ~1200 lb/yd³

Lower bulk density usually means greater porosity and free air space

Increased moisture blocks air passages, and air flow will decrease

2. Pile Moisture

- Required by microbes for life processes, heating and cooling, place to live
- Optimum is 45-60% moisture
- > 65% means pore spaces filled — anaerobic conditions
- < 40% fungus dominates
 difficult to re-wet
- < 35% dust problems

3. Pile Aeration

- Aeration supplies oxygen
- O₂ consumption increases with temperature
- Bacteria start anaerobic respiration <10% O₂
 - Slows decomposition
 - Produces odors

OXYGEN CONTENT

> 5% in compost pile for aerobic decomposition 21% air

Forced Aeration

Oxygen depletion in an aerated static compost pile using raw sludge

4. Pile Shape and Size

- Smaller piles allow for greater air flow, especially to center of pile
- Larger piles retain temperatures
- Excessively large piles increase compaction
- You can compost with a big pile if have:
 - Good structure
 - Higher C:N
 - Low bulk density
- Equipment should match pile size

Pile Volume Affects Composting Rate

5. Temperature

- Higher temperatures: faster decomposition
- Excessively high temperature (> 160°F , 71°C): reduces microbial diversity and slows composting
- Most weeds and pathogens killed at temps 131°F (55°C) or higher

Relationship between Temperature and Respiration

Isothermal Variation in a Windrow (40% Fresh Sludge, 60% Sawdust)

PFRP

Process to Further Reduce Pathogens

- Time and Temperature requirements to assure pathogen reduction
- Aerated Static Pile and In-vessel: —131°F (55°C) or higher for 3 days
- Turned windrow:

–131F (55°C) or higher for 15 days or more with 5 turnings

Recommended Conditions

Variable	Recommended Range
Initial C:N ratio	25:1 to 40:1
Moisture content	50% to 60%
O ₂ concentration	>>5%
Temperature	55 to 65 °C (131-149 °F)

Recommended Conditions

Variable	Recommended Range
Initial bulk density	<1100 lbs/cu yd
Particle size	1/8 to 1/2 in
pH	5.5 to 8.0

6. Time

- Mesophilic
 - a few days to 2 weeks
- Thermophilic
 - 3 weeks to several months
- Curing and maturation
 - 1 to several months
 - eliminates inhibitors to seed germination and crop growth

Curing (Compost maturation)

- Mesophilic process
- Respiration reduced
 - O₂ uptake
 - Heat generation
 - Moisture loss
- Recolonization by soil microbes

Property Changes at Completion

- Temperature < 10°C warmer than ambient
- Can't recognize original materials; dark color
- Stable; smells earthy
- Volume: 25%-60% ↓
- Mass: 40-80%