2015 Precision Peanut Research

Kendall R. Kirk1, Benjamin Fogle2, J. Warren White3, Joel S. Peele3, James S. Thomas1, Andrew C. Warner2, Hunter F. Massey2, D. Hollens Free1

1 Edisto Research & Education Center, PSA, Clemson University, Blackville, SC
2 Agricultural Mechanization & Business, SAFES, Clemson University, Clemson, SC
3 Amadas Industries, Suffolk, VA

2016 SC Peanut Growers’ Meeting
Santee, SC
January 28, 2016
AUTOMATED DEPTH PEANUT DIGGER
Digger Performance Across Soil Types

Sandy Soil

Ground Level

Optimal Blade Depth

Clay Soil

Ground Level

Optimal Blade Depth
2013 True Digging Losses, lb/ac dry basis

Digger Setting

- Too Shallow
- Sand
- Medium
- Clay
- Too Deep

- Sand Zone
- Medium Zone
- Clay Zone
Automated Blade Depth Control
Further Development of Depth Gauge
Testing on 6-row Diggers
KMC 2-Row Tests

- AutoDepth
- FixedTopLink
Digger Performance - KMC 2-Row Tests

Blade Depth (%):
- AutoDepth
- FixedTopLink

Cylinder Extension (%):
- AutoDepth
- FixedTopLink

Time, sec

CLEMSON
PRECISION AGRICULTURE

CLEMSON
AGRICULTURAL MECHANIZATION & BUSINESS
Digger Performance - KMC 2-Row Tests

- **Blade Depth, %**
- **Shallow EC, dS/m**

- **AutoDepth**
- **FixedTopLink**
Determining Digging Losses
Digging Losses – KMC 2-Row Tests – Virginia Type

<table>
<thead>
<tr>
<th></th>
<th>Nix</th>
<th>EREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>482</td>
<td>115</td>
</tr>
<tr>
<td>Auto</td>
<td>451</td>
<td>107</td>
</tr>
</tbody>
</table>
Yield – KMC 2-Row Tests – Virginia Type

![Bar chart showing yield comparison for Nix and EREC with treatments A and B.](chart.png)

<table>
<thead>
<tr>
<th></th>
<th>Nix</th>
<th>EREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed</td>
<td>5375</td>
<td>4516</td>
</tr>
<tr>
<td>Auto</td>
<td>5476</td>
<td>4711</td>
</tr>
</tbody>
</table>
Upcoming Digger-Related Work

• Automated blade depth
 – Evaluate best depth automation control method
 – Further refine depth gauge design
 – Commercial prototypes in 2016

• Effects of travel speed and chain speed
 – Digging losses and yield effects
 – Towards automation

• Irrigation prior to digging
 – Develop recommendations
 – Cost-benefit analysis
 – Dry year benefits
PEANUT YIELD MONITOR
2015 Yield Monitor Research

• Commercial prototypes
 – Deere GS3 platform
 – Deere cotton sensor
 – Amadas 2108, 2110, 9970, 9980

• Moisture sensing
2014 Peanut Yield Monitor - 2108

11% Load Weight Prediction Error

Predicted Load Weight, lb

Actual Load Weight, lb
11% Load Weight Prediction Error
Error vs. Load Number

![Graph showing the relationship between error and load number with various data points for different dates.

CLEMSON
PRECISION AGRICULTURE

CLEMSON
AGRICULTURAL MECHANIZATION & BUSINESS]
Stationary Test Predictions

- Dry Tests
- Wet Test 1
- Wet Test 2
- Wet Test 3

9% Mass Flow Prediction Error
2015 Research – Moisture Correction of Mass Flow

Avg. Abs. Error = 11.9%

Without Moisture Correction

Avg. Abs. Error = 18.6%

With Moisture Correction
Preliminary Kernel Moisture Sensing Results

Avg. Abs. Error = ±0.5 %, w.b.
Preliminary Hull Moisture Sensing Results

Avg. Abs. Error = ±0.8 %, w.b.
Upcoming Yield Monitor-Related Work

• Wrap-up algorithm development
 – Yield prediction with moisture correction
 – On-the-go moisture sensing

• Commercial prototypes in 2016

• Combine load sensing
 – Header losses
 – Tailings losses

• Management applications of peanut yield data
Acknowledgments

• Rob Bates Farms (Blackville), Bud Bowers Farms (Luray), Joe Boddiford Farms (Sylvania), Walker Nix Farms (Blackville), Murray Phillips Farm (Pearsall, TX), Rogers Brothers Farm (Hartsville)
• Blanchard Equipment, John Deere ISG, Lassetter Equipment
• 42 Clemson Ag Mech & Business undergraduate across 3 years