RESOURCES & TOOLS for STS COURSE DEVELOPMENT

ONLINE COLLECTIONS OF STS SYLLABI

symptom.ucdavis.edu/stsnet/index.php
This great site is hosted by UC-Davis, and was created to promote connections between STS faculty around the country (it includes a collection of syllabi).

vos.ucsb.edu/browse.asp?id=2731
Hosted by UC-Santa Barbara, this site is an index of online resources in Science, Technology, & Culture organized topically (museums, history, scifi, syllabi, conferences, etc.)

www.4sonline.org
The Society for the Social Studies of Science (4S) is devoted to understanding the social context of science and technology, and technology as science. Their online website contains information for scholars interested in STS issues, including a collection of STS syllabi, a list of journals and books series in the field, and a list of films professors have used in STS courses.

An extensive syllabus archive for the history of health, disease, healing, psychiatry and related topics, hosted by the National Library of Medicine.

www.racesci.org “The RaceSci website is a resource for scholars and students interested in the history of “race” in science, medicine, and technology.” It includes links to digital archives, online resources, and syllabi.

Additionally, the last two pages of this handout include links to the online presence of 50+ programs in STS related fields. Many of these departments have a selection of syllabi posted online, and contain links to STS resources you may find valuable.

ONLINE DATABASES & WIKIS
(to help you design and/or find classroom materials)

General STS

Moving Image Archive: www.archive.org/details/movies
Includes the Prelinger Archives, and contains over 2,000 “ephemeral films” online, all within public copyright, including such 1950s classics as *Duck and Cover* (1951) and *A is for Atom* (1953), Thomas Edison’s first films in the early 1900s, and recent material in the public domain.

The Library of Congress, American Memory Collection memory.loc.gov/ammem/index.html
This fully indexed and searchable meta-collection of multi-format sources also contains a list of browsable collections, including African American History, Environment/Conservation, Government/Law, Technology/Industry, etc.

The American Experience, by PBS, contains a theme on technology in American history, from big business to aviation and household innovations, www.pbs.org/wgbh/amex
Linda Hall Library, Science, Engineering & Technology Information for the World, Online Exhibitions: www.lhl.lib.mo.us/events_exhib/exhibit/index.shtml
 • Centuries of Civil Engineering
 • Paper Dinosaurs 1824-1969
 • The Year 1000: A Legacy of Science and Technology
 • The Face of the Moon: Galileo to Apollo

New York Public Library Digital Gallery, “free and open access to hundreds of thousands of digital images,” digitalgallery.nypl.org/nypldigital
 • The Newtonian moment: science and the making of modern culture: www.nypl.org/research/newton
 • on infrastructure, commemoration the 150th anniversary of the American Society of Civil Engineers: www.nypl.org/admin/exhibitions/ioni/index.html
 • Diversity endangered/diversity discovered: www.nypl.org/admin/exhibitions/endangered/index.html
 • Heavens above: art and actuality: www.nypl.org/research/sibl/trouvelot
 • Seeing is believing: 700 years of scientific and medical illustration: seeing.nypl.org

Museums of Natural History, Science, and Industry can also be great resources for talking about the interface between expert and non-expert knowledge. Although most have a greater physical than online presence, browsing their pages can give you a good idea of the issues they are addressing in their current exhibits. Here are links to a few major museums:
 • American Museum of Natural History in New York: www.amnh.org
 • Denver Museum of Science and Nature: www.dmns.org/main/en
 • Museum of Science, Boston: www.mos.org
 • Museum of Science and Industry in Chicago: www.msichicago.org
 • Smithsonian’s Air and Space Museum, www.nasa.gov & Museum of Natural History, www.mnh.si.edu

Medicine, Food, and Culture

Image Archive of the American Eugenics Movement, co-sponsored by the Dolan DNA Learning Center and Cold Spring Harbor Laboratories: www.eugenicsarchive.org/eugenics

Race: A Project of the American Anthropological Association: www.understandingrace.org

National Library of Medicine
 Online Exhibitions and Digital Projects: www.nlm.nih.gov/onlineexhibitions.html
 • Changing the face of Medicine
 • Profiles in Science (including Rosalind Franklin’s papers)
 • The Visible Human Project: www.nlm.nih.gov/research/visible/visible_human.html

Dittrick Medical History Center: www.case.edu/artsci/dittrick/site2/museum/online
 • Smallpox: A city on the edge of disaster
 • Obstetric literature and the changing character of childbirth
 • Haunting images: photography, dissection, and medical students
Wellcome Trust Centre for the History of Medicine: www.ucl.ac.uk/histmed
Smallpox History: www.smallpoxhistory.ucl.ac.uk

University of Adelaide’s Research Centre for the History of Food and Drink: www.arts.adelaide.edu.au/centrefooddrink

Information, Communication, and Society

LabLit.com: the culture of science in fiction & fact: www.lablit.com

Although it looks cheesy, this website has the single best online index of sci-fi literature available.
It is searchable by author, title, or subject! www.scifan.com

The scholarly journal Science Communication focuses on communication both between scientists and a non-scientific audience, as well as with the professional community: scx.sagepub.com

Interested in high quality, reusable, distributable, educational media? Think video games.
Epistemic Games: “Building the future of education.” epistemicgames.org/eg
The education arcade: www.educationarcade.org
The learning arcade: www.learningarcade.org

Innovation and Entrepreneurship in Social Context

J. Robert Oppenheimer Centennial at Berkeley: ohst.berkeley.edu/oppenheimer/exhibit

Chemical Heritage Foundation, Online Exhibits: www.chemheritage.org/exhibits/ex-nav4.html
 • The Biotechnology Hall of Fame
 • Her lab in your life: women in chemistry
 • The Pittcon Hall of Fame (scientific instrument makers)
 • Spinning the elements: Wallace Carothers and the nylon legacy

The Faces of Science: African Americans in the Sciences. This website might not look very snazzy, but it contains a fantastic collection of resources! https://webfiles.uci.edu/mcbrown/display

Nature, Environment, and Sustainability

Understanding Evolution for Teachers: evolution.berkeley.edu/evosite/evohome.html
This website has a fantastic section on the history of evolutionary thought

Intergovernmental Panel on Climate Change: www.ipcc.ch

Environmental History Resources: www.eh-resources.org

Score Card: “A pollution report for your county, covering air, water, chemicals, and more.”
What are the pollutants in your backyard and who put them there: www.scorecard.org

Roberta Millstein’s History and Philosophy of Biology Resources: philosophy.ucdavis.edu/millstein/philbio.html
Law, Values, and Science Policy

U.S. House of Representative’s Committee on Science and Technology. This site includes current legislation, press releases, hearings, and information about and materials distributed by the various Subcommittees (Space and Aeronautics, Technology and Innovation, Research and Science Education, Investigations and Oversight, and Energy and Environment).

http://science.house.gov

AAAS science policy programs: www.aaas.org/spp

US Office of Science and Technology Policy: www.ostp.gov

Consortium of Law & Values in Health, Environment & the Life Sciences:

www.lifesci.consortium.umn.edu

Online Ethics Center for Engineering and Science, Case Western Reserve, http://onlineethics.org

MAGAZINES, NEWSPAPERS, BLOGS & PODCASTS
(source materials for your students)

Edge: “The Third Culture. The third culture consists of those scientists and other thinkers in the empirical world who, through their work and expository writing, are taking the place of the traditional intellectual in rendering visible the deeper meanings of our lives, redefining who and what we are.” www.edge.org

National Geographic: “inspiring people to care about the planet” (and I would add, the planet’s inhabitants, both animal and human). They have lots of online photos and interactive material that corresponds to the headlines of National Geographic Magazine.

Scientific American: Well known, readable source of current and historical articles about science and technology. www.sciam.com Also, Digital .pdfs of all articles 1993 to the present are available through the Clemson Library under EBSCO’s single journal subscriptions.

Seed: “science is culture.” Includes videos, podcasts, articles, blogs, all about science and culture magazine: www.seedmagazine.com blogs: www.scienceblogs.com

Skeptic: “The Skeptics Society is a scientific and educational organization of scholars, scientists, historians, magicians, professors and teachers, and anyone curious about controversial ideas, extraordinary claims, revolutionary ideas, and the promotion of science.” www.skeptic.com

Podcasts (if you have iTunes, simply browse through their podcast directory by subject)
• Nature Podcast (my favorite, by far), www.nature.com/podcast The Nature group also produces more specialized podcasts on stem cells, cancer, physics, chemistry, and more.
• The Naked Scientists: Naked Science Radio Show, www.thenakedscientists.com
• Science Friday: Making Science Radioactive, www.sciencefriday.com
• NASAdcasts (shuttle trips, astronomy, etc…), www.nasa.gov/multimedia/podcasting
• President’s Weekly Radio Address (3-5 minutes each), www.whitehouse.gov/news/radio
If you don’t have iTunes, you can download it for free, www.apple.com/itunes/download
ACADEMIC SOCIETIES & THEIR JOURNALS

American Association for the History of Medicine (AAHM): www.histmed.org
Bulletin of the History of Medicine (Project MUSE: 1996-present online)

American Society for Environmental History (ASEH): www.aseh.net
Environmental History (co-published by the Forest History Society)
www.historycooperative.org/chindex.html (2003-present online, open access)

History of Science Society (HSS): www.hssonline.org
Isis (1913-present online, JSTOR and Univ. of Chicago Press Journals)
Osiris (1936-2005 online, JSTOR and Thompson Gale)

International Society for the History, Philosophy, and Social Studies of Biology (ISHPSSB, or “ishkabibble,” or ISH). ISH doesn’t publish a journal of its own, but members can get discounts with any of the following journals. www.ishpssb.org
Metascience (1997-present online, SpringerLink and Kluwer)
Journal of the History of Biology (1997-present online, Kluwer)
Biology and Philosophy (1997-present online, Kluwer)
Annals of Science (1975-present online, Academic Search Premier and Taylor & Francis Journals)

Philosophy of Science Association (PSA): www.philsci.org
Philosophy of Science (1934-present online, JSTOR and University Chicago Press Journals)

Society for the History of Technology (SHOT): www.historyoftechnology.org
Technology and Culture (1959-present online, JSTOR and Project MUSE)
Pamphlet series: Historical Perspectives on Technology, Society, and Culture:
www.historyoftechnology.org/pubs/bklt_list.html

Society for Literature, Science, and the Arts: www.litsciarts.org
Configurations: A Journal of Literature, Science, and Technology (1993-present online, Project MUSE)

Society for the Social Studies of Science (4S): www.4sonline.org
Science, Technology, and Human Values (1978-2003 online, JSTOR)
Social Studies of Science (1975-present online, JSTOR and SAGE Publications)
Perspectives on Science (1996-present online, Academic Search Premier and Project MUSE)

H-NET DISCUSSION NETWORKS

The Humanities and Social Sciences Online network hosted by Michigan State University provides online discussion networks for academics in any field willing to host a forum (currently ~180). You can either read postings online, or have them automatically delivered to your email address. Some forums require registration; others do not. www.h-net.org

Three forums that may be of interest …
H-Energy (political economy of oil, hist. technology, energy, and the environment):
www.h-net.org/~energy
H-Environment (environmental history): www.h-net.org/~environ
STS ANALYSIS TOOL
Developed by Professor Julie R. Newell, Southern Polytechnic State University
http://www.spsu.edu/sis/newell/StudentResources/sts2000tool.html

CHOICE
What choices are being made?
How has the choice been framed?
 By whom? Why?
What options have already been eliminated?
 By whom? Why?
Who is doing the choosing?
 “Experts”? Which ones? What is the basis of their expertise?
Members of the community expected to benefit from the choice? (see “benefit” below)
Members of the community bearing the cost of the choice? (see “cost” below)
Members of the community bearing the risks of the choice? (see “risk” below)

ACCESS
How and why access to knowledge or technology is controlled and distributed.
Before:
Who has access to the information necessary to participate in the choice process?
 If access to such information is being actively limited, why and on what basis is access granted?
 If access to such information is being passively limited, what barriers to access exist and how
 might they be eliminated? (such barriers might be technological, educational, economic or
 bureaucratic, for instance)
After:
Access to knowledge or technology may be limited as a result of the choice being considered.
 These barriers may be active or passive.
Have the potential limits to access been evaluated as part of the costs and benefits of the choice?

RISK
What risks are involved?
How is risk being defined?
 By whom?
How is risk being measured and weighed?
 By whom?
Are potential risks not easily quantified being eliminated or minimized in the decision process?
How are long-term risks being weighted relative to short-term or immediate risks?
Are those potentially at risk involved in the decision making process?
Is this a self-defined or an externally defined group?
If those at risk are included, at what stage of the process?
What weight are their concerns being given in the decision-making process?
COST
What costs are involved?
How is cost being defined?
By whom?
Does “cost” mean just “dollars and cents” or does it include other impacts such as economic, environmental, and social impacts?
How is cost being measured and weighed?
By whom?
Are potential costs not easily quantified being eliminated or minimized in the decision process?
How are long-term costs being weighted relative to short-term or immediate costs?
Are those expected to bear the cost involved in the decision making process?
Is this a self-defined or an externally defined group?
If those bearing the cost are included, at what stage of the process?
What weight are their concerns being given in the decision-making process?

RESPONSIBILITY
Responsibility may be an issue with regard to any issue of choice, access, cost, risk, or benefit.
Responsibility may lie at any one of, or at several of, the following levels:
Individual, social, professional, governmental
How is responsibility being defined?
Moral/ethical? financial? rules (including laws)? other?
How is responsibility being assigned or assumed?
By whom?
Limited or unlimited?
For choosing, for implementing the choice, or for the outcomes of implementation?
For what period of time?
For intended or unintended outcomes?

BENEFITS
What are the potential benefits?
How is benefit being defined? By whom?
How is benefit being measured and weighed? By whom?
Are potential benefits not easily quantified being eliminated or minimized in the decision process?
How are long-term benefits being weighted relative to short-term or immediate benefits?
Are the benefits widely or narrowly distributed?
Are those expected to reap the benefits involved in the decision making process?
Is this a self-defined or an externally defined group?
If those expected to benefit are included, at what stage of the process?
What weight are their concerns being given in the decision-making process?
To what degree do those benefiting from a given choice:
Bear the responsibility?
Accrue the costs?
Take the risks?
SCIENCE, TECHNOLOGY, POLICY INTERNSHIP PROGRAMS FOR STUDENTS

American Academy for the Advancement of Science
Science and Technology Fellowships, “Plug the power of science into public policy”:
http://fellowships.aaas.org
Center for Science, Technology and Security Policy, opportunities:
http://cstsp.aaas.org/opportunity.html

University of Virginia’s STS Policy Internship Program, “provides information about the school's internships for undergraduate engineering students interested in science and technology policy,”
www.sts.virginia.edu/pip

IEEE (Institute of Electrical and Electronics Engineers) Public Policy and Government Internship Opportunities
www.ieeeusa.org/policy/Internships/index.html

Progressive Policy Institute, Policy Internships:
www.ppionline.org/ppi_sub.cfm?knlgAreaID=87&subsecid=64
Includes internships in education policy, energy and environmental policy, health care policy, & technology and new economy policy.

Environmental Protection Agency, Opportunities for Students, www.epa.gov/careers/stuopp.html

National Institutes of Health, Office of Science Policy Analysis, Policy Fellowship Programs,
http://ospp.od.nih.gov/fellowships

National Science Foundation, Student Appointments,
www.nsf.gov/about/career_opps/careers/student.jsp

Clemson University Career Center Internship Resources,
http://career.clemson.edu/students/internship.htm

“The Christine Mirzayan Science & Technology Policy Graduate Fellowship Program within the Policy and Global Affairs Division of the National Academies is designed to engage graduate science, engineering, medical, veterinary, business, public policy, and law students in the analysis that informs the creation of science and technology policy and to familiarize them with the interactions of science, technology, and government.” The site includes links to other science policy internship possibilities as well: www7.nationalacademies.org/policyfellows

HOW TO PROPOSE AN STS COURSE @ CLEMSON
(taken from www.clemson.edu/sts)

Decide whether the course you have in mind will be a disciplinary course in your department or an interdisciplinary course with an STS number. If it is a course in your department, fill out the course approval form at http://dprod6.clemson.edu/cucc/. Make sure you specify (writing them in if necessary) all the general education requirements you wish the course to satisfy. Also make sure that the syllabus has enough detail so that the STS content covered is clear. That proposal goes through the usual process for approval by your department and college curriculum committee and then to the University Undergraduate Curriculum Committee.
If you are proposing an interdisciplinary course and want to give it an STS number, you fill out the same form but then submit the course to the Science and Technology in Society Committee (Pam Mack, Chair). If that committee approves the course it then goes to the University Undergraduate Curriculum Committee.

The standard university course proposal forms are usually not detailed enough for the committee that evaluates STS courses to be able to see how well your course meets the STS requirement, particularly if the STS content is integrated with technical content. After some experience we have found that what works best is if you provide the STS subcommittee with an expanded syllabus. This syllabus should provide more detail about the STS content than the syllabus required by the Undergraduate Curriculum Committee (SYLCert9119), and may go into more detail than a syllabus you would give your students. This is particularly important if your topic for a particular week is something like “automobile safety”—you need to tell us what social and policy issues you will cover in addition to the technical issues. Your detailed syllabus should not only demonstrate both how the goals of the course investigate questions central to understanding the relationships between society, science, technology, medicine, and/or the environment, but also how some assignments ask students to explore these issues (either inside or outside of class). The detailed syllabus can be included with your course proposal or sent directly to Pam Mack (pammack@clemson.edu).

The University Undergraduate Curriculum Committee has a subcommittee that recommends whether a course should be approved as meeting the STS requirement. In general, the UCC subcommittee looks for:

- At least 30 - 40% STS content
- Preparing students to be good citizens, able to effectively and confidently evaluate complex scientific, medical, and/or technological issues
- Dealing with both the impact of science and/or technology on society AND how science, medicine, and/or technology are social enterprises shaped by politics, funding, ethics, etc.
- Having students evaluate all sides of controversial issues

At www.clemson.edu/sts you will find course descriptions of existing STS courses and resources for faculty. If you have questions, contact Pam Mack at 656-5356 or by email (pammack@clemson.edu).

GENERAL EDUCATION GUIDELINES

Developed by the Undergraduate Curriculum Committee, effective 15 May, 2005

Science and Technology in Society (STS)

This requirement will be met by selecting a science and technology course from the approved list of courses. The selected course may be incorporated in the ten required credits in the Mathematical, Scientific and Technological Literacy area, the six required credits in the Arts and Humanities, the six required credits in the Social Sciences, or as an additional requirement within the major.

Degree programs may select the context of their STS course in such a way that benefits the total curriculum.

1 These STS guidelines can also be found at http://virtual.clemson.edu/groups/ugs/GE/. Click on “General Education Guidelines and Courses November 5, 2004” and page down to pages 4 and 5.
Objective: Students will study interactions among the natural sciences, technology, and society. They will explore how these systems affect each other and are affected by humans. Students will learn how to make informed decisions about science and technology in a social context.

Rationale: We live in a world shaped largely by science and technology. It is important that as citizens our graduates are able to come to educated opinions about interactions that involve science, technology and society. This requires an introduction to the methods of science and the ability to ask informed questions and think critically about how science and technology interact with society.

For example:
- How are informed choices made about future human successes within global systems (natural, economic, social)?
- How do our values shape science and technology?
- How do new scientific and technological developments require us to refine our values and ethical judgment?
- What have we gained and what have we lost from the progress of science and technology?
- How does our political system handle controversies about science and technology?
- How are developments in science and technology affected by and how do they affect economic, security, environmental, educational and other policy decisions at local, national, international and global levels?
- Can we predict the impact on society of a new technology?
- To what extent are current technological and social systems sustainable?

Informed decision-making arises from understanding the issues involved. Students will learn to put emotion and bias into perspective, evaluate information and claims of fact, identify alternatives, characterize choices, and assess results.

The Faculty is encouraged to develop and recommend additional courses to meet this requirement. To qualify for STS designation, courses should deal with choices, not simply present the development of a particular science or technology. All STS courses will have a common goal of establishing knowledge and understanding of relationships, impacts, and interactions between science, technology and societal systems. It is not sufficient for an STS course simply to examine how and where science and technology are applied in society. Content and methods will be appropriate to the general education area in which the courses are offered.

Courses are particularly encouraged that deal with a case study, because focus on a single issue like genetics allows the professor both to teach enough of the science so that the students can understand the issue in some depth and also expose students to a wide range of questions, perspectives, and concerns. Courses team-taught by instructors from different disciplines might also be particularly effective.

Faculty submitting proposals for courses to meet the STS General Education requirement should include a separate justification statement which addresses how the course will prepare students to be good citizens in a technological society, able to have useful opinions about complex technological issues. Components of the course addressing science and technology issues in society should be identified and explained.
(some) **STS Programs at Universities in the U.S.**

Arizona State University
 Center for Biology and Society (Bioethics, Policy, and Law; History and Philosophy of Science, Communicating Science): sols.asu.edu/cbs/index.php
 Consortium for Science, Policy & Outcomes: www.cspo.org
Carnegie Mellon University, Engineering & Public Policy: www.epp.cmu.edu
Clemson University, Science & Technology in Society, www.clemson.edu/sts/
Claremont Colleges (Harvey Mudd, Scripps, Claremont McKenna, Pitzer, Pomona): www2.hmc.edu/www_common/sts/stswelc.html
Cornell University, Department of Science & Technology Studies: www.sts.cornell.edu
George Washington University, Center for International Science and Technology Policy: www.gwu.edu/~cistp/
Georgia Institute of Technology
 School of History, Technology, and Society: www.hts.gatech.edu
 Science, Technology and Culture: www.lcc.gatech.edu/stac/
 The Experimental Game Lab at Georgia Tech: egl.gatech.edu
Harvard University
 History of Science Department: www.fas.harvard.edu/~hsdept/
 Belfer Center for Science and International Affairs: bcsia.ksg.harvard.edu
Indiana University – Bloomington, Department of History and Philosophy of Science: www.indiana.edu/~hpscdept/
Johns Hopkins University
 History of Science, Medicine and Technology: www.hsmt.jhu.edu
 Department of History of Science and technology: web.jhu.edu/host
 Institute of the History of Medicine: histmed.jhmi.edu
Lehigh University, Science, Technology, and Society: www.lehigh.edu/~insts/insts.html
Massachusetts Institute of Technology
 Program in Science, Technology, and Society: web.mit.edu/STS
 Technology and Policy Program: tppserver.mit.edu
Michigan State University, Science, Technology, Environment, and Public Policy Specialization: www.jmc.msu.edu/stepps/index.htm
Pennsylvania State University, Science, Technology, and Society: www.engr.psu.edu/sts/
Princeton University
 History of Science Program: hos.princeton.edu
 Program in Science, Technology and Environmental Policy: www.princeton.edu/~step/
Rensselaer Polytechnic Institute, Science and Technology Studies Department: www.sts.rpi.edu/index.php
Stanford University
 Program in Science, Technology & Society: sts.stanford.edu or www.stanford.edu/group/STS/
 History and Philosophy of Science Program: www.stanford.edu/dept/HPS/
Stony Brook University, Department of Technology and Society: www.stonybrook.edu/est/
Syracuse University, Center for Technology and Information Policy: www.maxwell.syr.edu/ctip/ctip.htm
University of California-Berkeley
 Science, Technology, and Society Network: ucsts.berkeley.edu
 Science, Technology, and Society Center: stsc.berkeley.edu
 Office for History of Science and Technology: ohst.berkeley.edu/index.html
University of California-Davis
 History and Philosophy of Science Program: sts.ucdavis.edu/frontpage.html
 Technocultural Studies: technoculture.ucdavis.edu
University of California-Los Angeles
 Program on Medicine, Technology, and Society: www.som.ucla.edu/pmts/
University of California-San Diego, Program in Science Studies (History, Philosophy, Sociology, and Communication of Science): helix.ucsd.edu/~scistud/
University of California-Santa Cruz, Science Communication Program (both Science Writing and Science Illustration): scicom.ucsc.edu
University of Chicago
 Conceptual and Historical Studies of Science: chss.uchicago.edu
 Fishbein Center for the History of Science and Medicine: social-sciences.uchicago.edu/fishbein/
University of Delaware, Center for Energy & Environmental Policy: ceep.udel.edu/ceep.html
University of Maryland – College Park
 Science, Technology, and Society Programs: www.sts.umd.edu
 Committee for Philosophy of the Sciences: carnap.umd.edu/cpas/
University of Michigan
 Science, Technology & Society: www.umich.edu/~umsts/
 Science, Technology, and Public Policy: stpp.fordschool.umich.edu
 History of Science, Technology & Medicine: sitemaker.umich.edu/hist.scitechmed/home
University of Minnesota
 History of Medicine Program: www.med.umn.edu/history/home.html
 History of Science and Technology: groups.physics.umn.edu/hsci/
University of Oklahoma, History of Science Department: www.ou.edu/cas/hsci/
University of Pennsylvania, Department of History and Sociology of Science, including undergraduate degrees in Health and Societies and Science, Technology, and Society, and a graduate program in the History and Sociology of Science: hss.sas.upenn.edu/mt-static/
University of Pittsburgh, Center for the Philosophy of Science: www.pitt.edu/~pittcntr/
University of Texas-Austin, Science, Technology, and Society: tlcserv.la.utexas.edu
University of Virginia, Science, Technology, and Society: www.sts.virginia.edu
University of Wisconsin-Madison
 History of Science: histsci.wisc.edu
 Medical History and Bioethics: medhist.wisc.edu
 Science & Technology Studies: sts.wisc.edu/index.html
 Nelson Institute for Environmental Studies: www.ies.wisc.edu
 games + learning + society: website.education.wisc.edu/gls/index.htm Based out of the College of Education, this program looks at how people learn while playing computer games.
Virginia Tech (Blacksburg), Science and Technology Studies Program
 Graduate studies: www.sts.vt.edu
 STS Department: www.sts.vt.edu/department/index.php
 (Northern Virginia Campus): www.sts.vt.edu/nvc/

For a worldwide directory of STS Programs, go to: www.stswiki.org/wiki/Worldwide_directory_of_STS_programs