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Abstract
Fourier-transform mid-infrared (FT-MIR) spectroscopy is a high-throughput,

cost-effective method to quantify nutritional traits, such as total protein and sulfur-

containing amino acid (SAA) concentrations, in plant matter. This study used the

spectroscopic technique FT-MIR coupled with attenuated total internal reflectance

sampling interface to develop multivariate models for total protein concentration in

chickpea (Cicer arietinum L.), dry pea (Pisum sativum L.), and lentil (Lens culi-
naris Medik.), in addition to SAA concentration in lentil. Total nitrogen data from

combustion analysis and SAA data from high-performance liquid chromatography

analysis following acid hydrolysis were used for model calibration and validation.

Models for the total protein concentration of chickpea (calibration root mean square

error [RMSE] = 0.093, R2 = 0.948, prediction RMSE = 0.10), dry pea (calibra-

tion RMSE = 0.096, R2 = 0.845, prediction RMSE = 0.093), and lentil (calibration

RMSE = 0.13, R2 = 0.845, prediction RMSE = 0.11) utilized infrared regions asso-

ciated with protein structures, namely amide bands A, I, and II. In sulfur-related

models for lentil total SAA (calibration RMSE = 0.014, R2 = 0.827, prediction

RMSE = 0.022) and methionine (calibration RMSE = 0.0075, R2 = 0.815, prediction

RMSE = 0.014) models utilized the C-S and S-CH3 stretching and bending bands.

Study findings support the conclusion that FT-MIR spectroscopy is a promising

high-throughput and cost-effective phenotyping technique that will allow quantifying

protein traits quickly and easily in pulse crops.

Abbreviations: AA, amino acids; ATR, attenuated total reflectance; FIR, far-infrared; FT, Fourier-transform; FTIR, Fourier-transform infrared spectroscopy;

FT-MIR, Fourier-transform mid-infrared; HPLC, high-performance liquid chromatography; IR, infrared; MAS, marker-assisted selection; MIR, mid-infrared;

NIR, near-infared; PLS, partial least squares; QTL, quantitative trait loci; RMSE, root means square error; SAA, sulfur-containing amino acids; ZFF, zero-fill

factor.
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1 INTRODUCTION

Pulse crops, such as chickpea (Cicer arietinum L.), dry pea

(Pisum sativum L.), and lentil ( Lens culinaris Medik.), are

an essential part of the global food system to provide plant-

based protein, low digestible carbohydrates, and a range of

micronutrients (Foyer et al., 2016; Johnson et al., 2020). These

staple crops are increasing in popularity as plant-based pro-

tein sources—a trend expected to continue based on many

factors such as health benefits and climate change (Graça

et al., 2019; Kim et al., 2019; Pimentel & Pimentel, 2003).

Pulses tend to be low in sulfur-containing amino acids (SAA)

(Boye et al., 2012), so varieties high in methionine and cys-

tine are a vital breeding objective to increase the protein

quality in plant-based diets. However, measuring the concen-

tration of amino acids (AA), particularly SAA, is challenging,

as they are susceptible to acid degradation and thus require

an additional protective oxidation step. A typical method

takes two to three days for sample digestion before AA

quantification. Instruments to measure AA concentrations,

such as high-performance liquid chromatography (HPLC),

are generally low-throughput, expensive, time-consuming,

and require highly skilled operators. Quantitative Fourier-

transform mid-infrared (FT-MIR) spectroscopy methods offer

a promising alternative to conventional methods for analyzing

protein and SAA. Samples can be analyzed in seconds with-

out the chemicals and consumables required by traditional

techniques.

Infrared (IR) is a low-energy region in the electromag-

netic spectrum extending from 12,800 to 10 cm–1 (Skoog

et al., 2016) and consists of the near-infrared (NIR; 12,800–

4,000 cm–1), mid-infrared (MIR; 4,000–200 cm–1), and

far-infrared (FIR; 200–10 cm–1) spectrums (Skoog et al.,

2016). Infrared spectroscopy using interferometers coupled

with Fourier-transform (FT) algorithms are termed Fourier-

transform infrared spectroscopy (FTIR) instruments and have

several advantages over previous dispersive spectroscopy

instruments, including (a) greater energy intensity due to the

lack of slits and fewer optics to attenuate the source radiation

(mechanically simpler), known as Jacquinot’s (throughput)

advantage; (b) simultaneous collection of multiple wave-

lengths (without the need for scanning), resulting in a shorter

collection time and consequent increases in the signal-to-

noise ratio, known as Fellgett’s (multiplex) advantage; and

(c) increased wavenumber accuracy inherent to the inter-

nal laser calibration and interferometer, enabling multiple

scans to be collected and averaged, known as Connes’ advan-

tage (Perkins, 1987; Skoog et al., 2016). Fourier-transform

instruments in the near, mid, and far regions probe high-

frequency oscillations (vibrational overtones), fundamental

vibrational modes, and low energy vibrations (Berthomieu

& Hienerwadel, 2009; Capuano & van Ruth, 2015; El

Core Ideas
∙ Fourier-transform infrared spectroscopy (FTIR)

spectroscopy is used to measure pulse total protein

and S containing amino acids.

∙ FTIR is a unique tool to measure functional groups

of a nutrient trait with low concentrations.

∙ These Fourier-transform mid-infrared prediction

models utilized the C-S and S-CH3 stretching and

bending bands.

Khoury & Hellwig, 2017). However, the fundamental oscil-

lations in MIR spectroscopy provide quantitative data from

unique functional group oscillations (Leong et al., 2018). The

overtones arising in the NIR range lack a robust quantita-

tive background due to the complexity of unresolved bands

(Capuano & van Ruth, 2015). Thus, chemometric models

underlying NIR spectroscopy may not produce consistent

quantitative results across diverse samples, such as grain

flours from different regions or years, despite success in

training sets. NIR spectroscopy was first reported for the eval-

uation of protein in pulses in Williams et al. (1978), yet the

method has been little reported since, with even less work

reported using MIR spectroscopy. The stronger absorption

bands of MIR spectra provide a superior platform for con-

sistent chemometrics with greater selectivity and sensitivity,

which will not change with crop genotype, growing location,

or year. Therefore, FT-MIR can be used to simultaneously

identify and quantify molecules (i.e., proteins, carbohydrates,

etc.) based on their distinct functional groups without further

sample preparation.

The functional groups of proteins (N-H and C = O) and

SAA (C-S and C-H of S-CH3) have permanent dipole

moments, and such groups can be readily probed with FT-

MIR spectroscopy (Barth, 2007; Berthomieu & Hienerwadel,

2009). Total protein and SAA offer a helpful picture of protein

quality in pulses since pulses are high in protein but limited

by SAA (Bhatty, 1988; Sarwar & Peace, 1986). Standard lab-

oratory approaches for measuring protein and SAA include

the Dumas method (nitrogen analysis through combustion),

Kjeldahl method, UV-visible spectroscopy (Chang & Yan,

2019), and various chromatography techniques, such as HPLC

with diode array detection. Most of the above approaches

are destructive to the sample, require extensive analysis time,

chemicals, and skills and are thus expensive. Amino acid

analysis, for example, costs over $100 per sample. Total

protein analysis is less expensive at ∼$6 but remains a con-

straint when analyzing thousands of samples. Consequently,

these methods do not qualify as high-throughput workflows

desired in nutritional breeding programs. In contrast, FT-MIR

 25782703, 2022, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/ppj2.20047 by C

lem
son U

niversity, W
iley O

nline L
ibrary on [14/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MADURAPPERUMAGE ET AL. 3 of 10

T A B L E 1 HPLC gradient method and conditions (max pressure:

400 bar; column temp: 40 ˚C)

Time A B Flow rate
min % MP mL/min

0.00 100.0 0.0 0.25

3.00 100.0 0.0 0.25

10.40 81.5 18.5 0.62

23.00 43.0 57.0 0.62

23.10 0.0 100.0 0.62

27.00 0.0 100.0 0.62

27.10 100.0 0.0 0.62

27.90 100.0 0.0 0.62

28.00 100.0 0.0 0.25

33.00 100.0 0.0 0.25

Note. MP, mobile phase.

spectroscopy is a nondestructive, high-throughput approach

requiring little operating costs or training. Therefore, the

objectives of this paper are two-fold: (a) demonstrate FT-MIR

as a potential high-throughput, nondestructive, and cost-

effective phenotyping technique for pulse nutritional traits,

and (b) present multivariate models for the quantification of

protein and SAA in pulse crops based on FT-MIR spectra.

2 MATERIALS AND METHODS

2.1 FTIR instrumentation and data
analysis software

A Cary 630 FTIR spectrometer with a diamond attenuated

total reflectance (ATR) module (Agilent Technologies) was

used to acquire all MIR spectroscopic data. The data acquisi-

tion was performed within a spectral range of 650–4,000 cm–1

under Happ-Genzel apodization. The instrument acquisition

parameters were optimized for each trait to enable the collec-

tion of spectral data with sufficient selectivity and sensitivity

for quantitative analysis (Table 2). The data were analyzed

with MicroLab Expert software (version 1.1) developed by

Agilent Technologies for multivariate statistical modeling

(chemometric modeling). Scatter plots were generated, and

pooled t-tests were performed in JMP Pro (14.0.0).

2.2 Chickpea, dry pea, and lentil seed
samples

All pulse seed samples were collected from U.S. breeding

programs, specifically the USDA-ARS chickpea breeding

program at Washington State University and the organic

pulse nutritional breeding program at Clemson University.

For chickpea and dry pea, a total of 100–150 dry seeds were

selected from each breeding line and ground to a maximum

particle size of 0.5 mm, using a cyclone sample grinder

(UDY Corporation). Likewise, 10–50 seeds were selected

from each lentil line and ground using a blade coffee grinder

(KitchenAid) and sieved to a maximum particle size of

0.5 mm. The powdered subsamples were stored before analy-

sis in a cold room maintained at 10 ˚C with a humidity level

of ∼50%.

2.3 Total nitrogen analysis

The total nitrogen content of all pulse flours was analyzed

on a combustion nitrogen analyzer at the Clemson Agricul-

tural Service Laboratory (Clemson, SC). The final protein

concentration was determined by multiplying total nitrogen

by a factor of 6.25 (Salo-väänänen & Koivistoinen, 1996).

2.4 Sulfur-containing AA analysis

Lentil SAA concentrations were determined using an acid

hydrolysis method with a pre-oxidation step, followed by

HPLC analysis. The hydrolysis method was adapted from

Gehrke et al. (1985) and Manneberg et al. (1995). In brief,

40 mg of lentil flour was weighed into glass culture tubes

(16 × 125 mm, polytetrafluoroethylene [PTFE] lined cap).

A lentil lab reference standard was included in each batch

to monitor batch-to-batch variation. Five mL of chilled per-

formic acid (9:1 ratio of formic acid and hydrogen peroxide)

was added to each tube to convert the SAA to stable deriva-

tives, methionine sulfone, and cysteic acid. The tubes were

gently swirled on a vortex mixer and refrigerated in an ice

bath overnight (16 h). Caps were removed, and PTFE boiling

rods (1/8 in. × tube length) were added. Samples were evap-

orated to dryness in an oil bath under vacuum (∼70–80 ˚C,

∼610 mmHg; 3 gal. resin trap; BACOENG). The tube rack

was elevated with a stir bar underneath to improve consis-

tent evaporation across the batch. The pressure was slowly

lowered to prevent bumping. Tubes were removed, and resid-

ual oil was wiped off. Caps were removed, and 4.9 mL of

6 M HCl (hydrochloric acid) was added, along with 0.1 mL

internal standard mix (25 mM norvaline and sarcosine each).

Tubes were tightly capped and gently swirled. Proteins were

hydrolyzed in an oven at 110 ˚C for 24 hr. Tubes were then

allowed to cool to room temperature and vortex mixed. Sam-

ples were filtered (0.22 μm polypropylene syringe filter), and

1 mL was added to a clean glass tube to be evaporated to dry-

ness as before. Samples were reconstituted with 1 mL mobile

phase A and loaded into HPLC vials for analysis.

Amino acid concentrations were measured using an HPLC

method adapted from Agilent application notes (Agilent
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T A B L E 2 Instrument acquisition and model parameters

Model name
Instrument scans #
(background/sample)

Resolution
cm–1

Zero-fill
factor Preprocessing

Calibration
breeding lines #

Validation
breeding lines #

Calibration
spectra #

Validation
spectra #

Chickpea total

protein

36/64a 4 None D+S 55 22 154 84

Dry pea Total

Protein

36/64a 4 None N, D+S 40 22 135 59

Lentil total

protein

200/100b 2 2 N 32 18 57 25

Lentil SAA 200/100b 2 2 N 37 24 53 34

Lentil

methionine

200/100b 2 2 N 26 22 39 31

Note. D+S, Savitzky-Golay first-order derivative and smoothing algorithm (smoothing window of 21), N, Normalization (0 to 1).
a64 scans ≈ 30 s at 4 cm–1 resolution.
b100 scans ≈ 75 s at 2 cm–1 resolution.

Application Note, 2010; Long, 2015). An Agilent 1100 series

system (Agilent Technologies) was used for analysis. A diode

array detector (DAD) collected spectra at 338 nm, 10 nm

bandwidth (reference 390 nm, 20 nm bandwidth) and 262 nm,

10 nm bandwidth (reference 390 nm, 20 nm bandwidth).

Mobile phase A consisted of 10 mM Na2HPO4 (sodium phos-

phate), 10 mM Na2B4O7•10H2O (sodium tetraborate dec-

ahydrate), and 5 mM NaN3 (sodium azide) and was adjusted

to pH 8.2 with concentrated HCl and subsequently filtered

through 0.2 μm regenerated cellulose membrane. Solution

B consisted of acetonitrile/methanol/water (45:45:10, v/v/v).

Separation was achieved on an Agilent Poroshell HPH-C18

3 × 100 mm analytical column (Part Number 695975-

502; Agilent Technologies) with the corresponding Poroshell

HPH-C18 3 × 5 mm guard column (Part Number 823750–

928). The G1329A autosampler derivatized AAs with OPA

(o-phthalaldehyde) and FMOC (9-fluorenylmethyl chlorofor-

mate). Vials of borate buffer (Part Number 5061-3339), H2O

(water) needle wash, and injection diluent (100 mL solution

A, 0.4 mL H3PO4 conc.) were also required. The injection

method was as follows (default speed and offset were used

except where noted): (a) draw 2.5 μL from borate buffer, (b)

draw 0.5 μL from a sample, (c) mix 3 μL from the air for five

times, (d) wait 0.2 min, (e) draw 0 μL from needle wash, (f)

draw 0.5 μL from OPA (vial insert) using 2 mm offset, (g)

mix 3.5 μL from the air for six times, (h) draw 0 μL from

needle wash, (i) draw 0.4 μL from FMOC (vial insert) using

2 mm offset, (j) mix 3.9 μL from the air for 10 times, (k)

draw 32 μL from injection diluent, (l) mix 20 μL from the

air for eight times, and (m) inject. See Table 1 for instrument

method and conditions. Dilution series were made for calibra-

tion standard curves from 9 to 900 pmol/μL with norvaline

(primary AA) and sarcosine (secondary AA) as internal stan-

dards at 500 pmol/μl. Calibration curves were generated for

each AA from the ratio of AA/internal standards. Standards

included cysteic acid, aspartic acid, glutamic acid, asparagine,

serine, glutamine, histidine, glycine, threonine, methionine

sulfone, arginine, alanine, tyrosine, cystine, valine, methio-

nine, tryptophan, phenylalanine, isoleucine, leucine, lysine,

hydroxyproline, and proline.

2.5 Chickpea total nitrogen model

The diamond ATR surface was cleaned with HPLC grade

methanol (Fisher Scientific) before spectra of the ground

chickpea samples (fully homogenized by mixing) were col-

lected. Instrument and model parameters are available in

Table 2. The instrument acquisition parameters were set

to absorbance mode with 64 scans (∼30 s) per spectrum

(Table S1), 4 cm–1 resolution, and no zero-fill factor (ZFF).

Each breeding line was analyzed seven times. The most sta-

ble spectra with constant intensity were selected without

averaging for calibration. Background corrections (36 scans)

were performed between each spectral collection. Protein

is a macronutrient with easily resolved IR bands, requiring

less stringent acquisition parameters than SAA, as dis-

cussed below. The calibration set included 55 breeding lines

(154 spectra) from the 2018 chickpea population, and the val-

idation set included 22 breeding lines (84 spectra) from the

2020 chickpea population for the partial least squares (PLS-1)

model (Tobias, 1995). The Savitzky-Golay first-order deriva-

tive and smoothing algorithm (smoothing window of 21) was

applied to all spectra. The model was calibrated with nitrogen

values obtained from a nitrogen analyzer. The PLS-1 model

was developed based on the regions sensitive to the total

protein concentration (3,682.61–3,006.98 cm–1, N-H stretch;

1,718.30–1,487.21 cm–1, amide bands I and II), and eight PLS

model factors were included in the model. The model was run

with full cross-validation.
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2.6 Dry pea total nitrogen model

The same background correction and data acquisition steps

as for chickpea were followed (Table 2). However, the cali-

bration set included 40 breeding lines (135 spectra) from the

2019 dry pea population, and the validation set included 22

breeding lines (59 spectra) from the 2020 dry pea population.

The spectra were initially normalized to a scale of 0 to 1, and

the Savitzky-Golay first-order derivative and smoothing algo-

rithm (smoothing window of 21) was applied. The model was

calibrated with total nitrogen values, as done for the chickpea

model. The PLS-1 model was developed based on the same

spectral ranges as the total nitrogen model above; however,

11 PLS model factors were included in the model. The model

was run with full cross-validation.

2.7 Lentil total nitrogen and SAA models

The diamond ATR window was cleaned with HPLC grade

methanol and allowed to dry before each spectrum was col-

lected. The background was collected every 30 min or less

for convenience. Fourier-transform mid-infrared spectra were

collected for 50 lentil breeding lines, and six spectra were col-

lected per breeding line. Acquisition parameters included 200

scans per background and 100 scans (∼75 s) per spectrum at a

resolution of 2 cm–1 and a ZFF of 2 (Table 2). All spectra were

normalized to a scale of 0 to 1. Unlike the previous models, the

spectra were not derivatized by the Savitzky-Golay algorithm

because the spectra were highly structured and informative at

a resolution of 2 cm–1 and with a ZFF of 2. The increased scan

number and resolution generated detailed spectra and allowed

for the quantification of SAA, which are at low concentrations

in lentil. For ease, the same spectra were used for the protein

model. Additionally, this allows for the models to be com-

bined into a single method for generating protein and SAA

data simultaneously.

A PLS-1 model for total nitrogen in lentil flour was

developed using Agilent MicroLab Expert software. The

most stable spectra were applied in calibration without aver-

aging. The calibration set included 32 breeding lines (57

spectra), and the validation set included 18 breeding lines

(25 spectra). The model utilized the same spectral regions as

in chickpea and dry pea and included five PLS model factors.

PLS-1 models for total SAA and methionine were similarly

attempted. In the model for total SAA, the calibration set

included 37 breeding lines (53 spectra), and the validation

set included 24 breeding lines (34 spectra). The model uti-

lized 721.24–867.07, 1,231.88–1,469.96, 1,904.20–2,241.99

and 2,825.78–2,994.91 cm–1 spectral regions and included

eight PLS model factors. Furthermore, the methionine model

included 26 breeding lines (39 spectra) and 22 breeding lines

(31 spectra) for calibration and validation, respectively. The

model utilized 674.65–808.37, 1,182.03–1,484.41, 1,975.49–

2,158.59, and 2,658.52–2,991.19 cm–1 spectral regions with

eight PLS model factors. All lentil models were run with full

cross-validatation.

3 RESULTS AND DISCUSSION

This study successfully demonstrated that FT-MIR is a robust,

nondestructive tool for measuring protein and SAA in pulse

crops. Proteins and SAA have polar functional groups sen-

sitive to MIR energy. The functional groups of proteins (N-H

and C=O) in chickpea, dry pea, and lentil flour were analyzed

through FT-MIR spectroscopy. Associated IR bands were

identified at ∼1,550 cm–1 (amide II bands), ∼1,650 cm–1

(amide I band), and between 3,310 and 3,270 cm–1 (amide A

band) (Tiwari & Singh, 2012). Multivariate models (PLS-1)

were developed associating these regions with total nitrogen

content. In chickpea, predicted protein concentrations of the

validation set ranged from 18.3 to 23.9%, with a mean of

20.9% (Table 3). The chickpea total nitrogen model achieved

an R2 of 0.948, a calibration root means square error (RMSE)

of 0.093, and a prediction RMSE of 0.10 (Figure 1b and

Table 4). For dry pea, the predicted total protein concentration

of the validation set ranged from 18.1 to 23.1%, with a mean

of 21.2%. The dry pea total nitrogen model achieved a calibra-

tion RMSE of 0.096, an R2 of 0.845, and a prediction RMSE

of 0.093 (Figure S1b). For lentil, predicted protein concentra-

tions ranged from 25.4 to 33.3%, with a mean of 28.3%. The

lentil total nitrogen model achieved an R2 of 0.845, a calibra-

tion RMSE of 0.13, and a prediction RMSE of 0.11 (Figure

S2b). These models predicted mean protein concentrations in

chickpea, dry pea, and lentil within the cited ranges in the lit-

erature (chickpea: 15.6–22.4%, dry pea: 20–25%, and lentil:

20.6–31.4%), demonstrating the applicability of the method

in the field (Jarpa-Parra, 2018; Khan et al., 2016; Upadhyaya

et al., 2016). Furthermore, pooled two-tailed t-tests performed

on each crop (chickpea: P > |t| = 0.93; dry pea: P > |t| = 0.97;

lentil: P > |t| = 0.82) targeting the means of actual and pre-

dicted protein concentrations of validation data showed no

significant difference.

The functional groups of SAA (C-S and C-H of S-CH3) in

lentil flour were similarly analyzed. SAA is a valuable nutri-

tional breeding trait because lentil (and other pulse crops)

is nutritionally limited by SAA, methionine, and cysteine,

despite being high in total protein. These low concentrations

present a challenge for IR band resolution and consequent

quantification. However, this study successfully identified

bands in the lentil MIR spectrum (∼751–685,∼2,493–2,157,

and ∼2,977–2,861 cm–1) associated with C-H stretching

of methyl mercaptan (S-CH3) and C-S stretching in pure
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6 of 10 MADURAPPERUMAGE ET AL.

T A B L E 3 Actual vs. model predicted data

Model name

Actual
calibration set
range)

Actual calibration
set true mean

Actual validation
set range

Actual validation
set true mean

Predicted
validation set
range

Predicted
validation set true
mean t-test

% protein

Chickpea total protein 15.4–24.6 20.0 18.1–24.6 20.3 18.3–23.9 20.9 NS

Dry pea total protein 18.3–23.9 21.1 18.4–23.6 21.0 18.1–23.1 21.2 NS

Lentil total protein 25.7–33.7 29.7 24.7–31.1 29.6 25.4–33.3 28.3 NS

Lentil SAA 0.211–0.348 0.279 0.197–0.321 0.265 0.207–0.326 0.258 NS

Lentil methionine 0.185–0.264 0.224 0.2007–0.251 0.221 0.194–0.294 0.222 NS

Note. NS, actual and predicted means of validation data were not significant at P < .05; SAA, sulfur-containing amino acid.

(b)

(a)
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Y (Cal) = 0.1612 + 0.9489X
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F I G U R E 1 (a) Average chickpea

mid-infrared first-derivative absorbance

spectrum. Regions in green were selected for

the total nitrogen model in chickpea. (b) Scatter

plot of actual vs. predicted total nitrogen (%) of

calibration and validation data with lines of

best fit

T A B L E 4 Chemometric model statistics

Model name R2 RMSEC RMSECV RMSEP SEP Bias
Chickpea total protein 0.948 0.093 0.093 0.10 0.10 −0.0057

Dry pea total protein 0.845 0.096 0.096 0.093 0.091 0.0039

Lentil total protein 0.845 0.13 0.13 0.11 0.11 0.016

Lentil SAA 0.827 0.014 0.014 0.022 0.021 −0.0066

Lentil methionine 0.815 0.0075 0.0075 0.014 0.014 0.0011

Note. RMSEC, root mean square error of calibration; RMSECV, root mean square error of cross validation; RMSEP, root mean square error of prediction; SEP, standard

error of prediction.
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F I G U R E 2 (a) Average lentil MIR

absorbance spectrum. Regions in green were

selected for the total sulfur-containing amino

acid (SAA) model in lentil. (b) Scatter plot of

actual vs. predicted total SAA (%) of calibration

and validation data with lines of best fit

methionine were recognized (Figures 2a, S3a–S4). The bands

apparent at ∼2,991–2,659 cm–1 and 1,470–1,232 cm–1 repre-

sent the total C-H, C-CH2, and C-CH3 oscillations in lentil

flour. The region between ∼2,159-1,975 cm–1 (the phonon

band arising due to the oscillations of the carbon lattice of

ATR- diamond) strengthened the prediction of the multivari-

ate regression models for total SAA and methionine. The

lentil SAA model achieved an R2 of 0.827, and the predicted

validation data ranged from 0.207 to 0.326%, with a mean

of 0.258%. In this model, the calibration RMSE was 0.014,

and the prediction RMSE was 0.022 (Figure 2b). Further,

the methionine model achieved an R2 of 0.815 and predicted

the validation results between 0.194–0.294%, with a mean of

0.222%. The methionine model had the calibration and predic-

tion RMSEs at 0.0075 and 0.014, respectively (Figure S3b).

The lines of best fit for the validation data (Figures 1b – 2b,

S1b–S3b; blue lines) have deviated slightly from that of the

calibration data (Figures 1b - 2b, S1b–S3b; black lines). The

t-tests performed for total SAA and methionine (P > |t| = 0.35

and P > |t| = 0.76, respectively) returned no significant dif-

ferences between actual and predicted means. The predicted

lentil methionine mean, 0.22%, agrees well with the litera-

ture (0.22%, USDA ARS, 2019). Total SAA makes up ∼2%

of the total protein content of lentils, whereas SAA comprise

∼4% of beef and chicken protein and ∼8% of chicken egg

protein (USDA ARS, 2019). Lentil and other pulse crops are

not a good source of SAA; however, genetic selection and

breeding may help increase their SAA concentrations. Devel-

oping lentil varieties with high SAA concentrations could

help improve the dietary intake of better-quality protein and

develop food products, such as protein powder, that con-

tain high-quality protein without adding another high-SAA

source.

Chemometric models with well-recognized and consistent

underlying bands will aid in the development of analytical

methods and accurate, consistent modeling regardless of dif-

fering sample origins. While the prediction RMSEs indicate

these models have high predictive ability for each sample,

the t-tests indicate they also accurately predict the population

means. The calibration data were not used in model validation,

and the purpose of calibration data was to build the model,

whereas validation data was to test the model. Thus, these total

protein, total SAA, and methionine chemometric models have

consistent applicability over these pulse crops regardless of

sample origin. Accordingly, FT-MIR spectroscopy provides

added advantages for stable and straightforward chemomet-

ric modeling compared with methods associated with the NIR

range, which lacks a strong quantitative foundation (Guo et al.,

2016).

Traditional univariate statistical regression modeling based

on Beer-Lambert was unsuitable for complex sample sys-

tems like lentil and chickpea. Partial least squares regression

(a multivariate statistical regression algorithm) was applied

with chemometric modeling throughout this study, where the
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best predictive use of spectral variables can be enhanced.

The use of PLS regression reduced the dimensionality of

the multivariate space in a supervised manner, maintaining

a good correlation between dependents (absorbance values)

and independent (analyte concentrations) variables (Saikat

et al., 2008). Therefore, PLS-1 proved to be an excellent

choice for correlating nutrient data with the spectral regions

associated with protein functional groups. Fourier-transform

mid-infrared spectroscopic data were utilized with minimal

mathematical pre-processing (averaging, normalization, and

the Savitzky-Golay derivative and smoothing algorithm). In

FT-MIR spectroscopy, the spectra are always associated with

functional groups and molecular skeletal structures (Yadav,

2005). Fully resolved functional group bands act as finger-

prints for traits (analytes). In proteins, the A, I, and II amide

bands (Figures 1a and S1a–S2a) were significantly associated

with protein content in our models. The C-H stretching bands

of methyl mercaptans and C-S stretching bands in methion-

ine are mainly associated with our total SAA and methionine

models. Other spectral regions common to both lentil flour

and the standard compounds (Figure S4) were also selected to

enhance the regression in the chemometric models. Notably,

different spectral acquisition parameters were followed in the

lentil models than the chickpea and dry pea models during

spectral sampling. This was to ensure sufficiently high resolu-

tion and scan number in the lentil spectra to observe the minor

bands associated with methionine at low concentrations in the

sample matrix. Once highly resolved spectra were employed,

the number of spectra required for a consistent model in the

lentil models was lower than for the chickpea and dry pea

models, which employed lower resolution parameters and had

fewer spectral details (data points) in each spectrum. How-

ever, high resolution is not required for a bulk trait such as

total protein because the associated amide bands are distinct

and quickly resolved. The use of first derivatives in the chick-

pea and dry pea spectra further strengthened the predictive

ability of the two respective chemometric models related to

total proteins.

Breeding programs require the generation of large amounts

of phenotypic data. Nutritional traits are no exception, yet

higher costs are associated with collecting these data than

traditional agronomic traits such as yield. With the great

promise of molecular-based breeding approaches, such as

marker-assisted backcrossing and genomic selection along

with genome-wide association studies, large datasets are

needed to discover quantitative trait loci (QTL) and elucidate

underlying gene pathways associated with traits (Liu et al.,

2020; Roorkiwal et al., 2016; Sab et al., 2020; Upadhyaya

et al., 2016). The application of conventional protocols in

quantifying nutrients (nutritional phenotyping) is not suitable

for the large volume of samples from the field. Significant

challenges with traditional quantitative analysis techniques

include long analysis times, highly trained workers, chem-

ical costs, chemical disposal, and instrument maintenance.

Fourier-transform infrared spectroscopy analysis time is short

(i.e., less than a minute), and the method does not require a

skilled operator (Capuano & van Ruth, 2015). It also requires

minimal sample preparation, minimizing the risks of haz-

ardous chemical usage and chemical cost. Compared with

the complex compartmentalization typical of liquid and gas

chromatography systems, the compact instrumentation occu-

pies little space and is relatively simple in construction.

Maintenance costs are also considerably lower than other

analytical instruments (Minali & Rein, 2015). Therefore,

FT-MIR spectroscopy can support a high-throughput and effi-

cient workflow for the quantitative analysis of nutritional

traits.

Accordingly, the chemometric regression (PLS-1) models

for total protein and methionine could be an essential part of

this high-throughput phenotyping workflow. This analytical

technique could lower costs in breeding programs globally

and open possibilities for developing and under-resourced

countries to adopt the technique in their breeding programs.

The methods and models presented in this study can accel-

erate nutritional breeding programs by reducing the time and

cost of analysis and by being incorporated into QTL discov-

ery pipelines. Rapid, low-cost data generation is advantageous

for efficiently increasing sample size and power in genome-

wide association studies. Once QTLs are detected, flanking

markers can be used in marker-assisted selection (MAS) to

verify the presence or absence of favorable alleles in progeny.

MAS could be an effective technique for nutritional traits

because the phenotype can be predicted without processing

and analyzing the seed. Seedlings could be genetically tested

and selected or discarded before flowering, allowing for same-

generation hybridization, essentially cutting generation time

in half.

4 CONCLUSIONS

Fourier-transform mid-infrared spectroscopy is conveniently

applicable with simple chemometric modeling to predict the

concentrations of total proteins and SAA in chickpea, dry pea,

and lentil. Well-recognized functional groups (bands) associ-

ated with total protein content and SAA content in the MIR

range make multivariate modeling relatively simple. There-

fore, the present work on FT-MIR spectroscopy creates a

platform for high-throughput and nondestructive phenotyping

with minimal costs and chemical hazards. Further, these tech-

niques can reduce breeding program expenses globally and

allow under-resourced countries to expand into nutritional

phenotypes, such as those with improved protein content.

Future studies may benefit from exploration of different mod-

eling techniques and larger sample sizes for calibration and

validation.
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