Chickpea Disease Diagnostic Series

Audrey Kalil, Plant Pathologist, Williston Research Extension Center, North Dakota State University

Uta McKelvy, Extension Plant Pathologist, Plant Sciences and Plant Pathology, Montana State University

Damping-off .. PP2072-1
Rhizoctonia seed, seedling and root rot PP2072-2
Dry root rot .. PP2072-3
Fusarium root rot .. PP2072-4
Fusarium wilt .. PP2072-5
Verticillium wilt ... PP2072-6
Ascochyta blight.. PP2072-7
Alternaria blight... PP2072-8
Stemphylium blight.. PP2072-9
Sclerotinia stem and crown rot PP2072-10
Botrytis gray mold... PP2072-11
Pea enation mosaic virus .. PP2072-12

Cover photo: Audrey Kalil, NDSU

This work is/was supported by the USDA National Institute of Food and Agriculture, Crop Protection and Pest Management Program through the North Central IPM Center (2022-70006-38001).

NDSU EXTENSION
EXTENDING KNOWLEDGE \ CHANGING LIVES

NDSU Extension does not endorse commercial products or companies even though reference may be made to tradenames, trademarks or service names. NDSU encourages you to use and share this content, but please do so under the conditions of our Creative Commons license. You may copy, distribute, transmit and adapt this work as long as you give full attribution, don’t use the work for commercial purposes and share your resulting work similarly. For more information, visit www.ag.ndsu.edu/agcomm/creativecommons.

For more information on this and other topics, see www.ndsu.edu/agriculture

County commissions, North Dakota State University and U.S. Department of Agriculture cooperating, NDSU does not discriminate in its programs and activities on the basis of age, color, gender expression/identity, genetic information, marital status, national origin, participation in lawful off-campus activity, physical or mental disability, pregnancy, public assistance status, race, religion, sex, sexual orientation, spousal relationship to current employee, or veteran status, as applicable. Direct inquiries to Vice Provost for Title IX/ADA Coordinator, Old Main 201, NDSU Main Campus, 701-231-7708, ndsu.eoaa@ndsu.edu. This publication will be made available in alternative formats for people with disabilities upon request, 701-231-7881. 64-12-22
Damping-off

Pythium and *Globisporangium* species

Figure 1
Photo: W. Chen, USDA-ARS, Pullman, Wash.

Figure 2
Photo: L. Porter, USDA-ARS, Prosser, Wash.

Figure 3
Photo: L. Porter, USDA-ARS, Prosser, Wash.
Damping-off

Pythium and *Globisporangium* species

AUTHORS: Weidong Chen and Lyndon D. Porter

SYMPTOMS
- Rotten seeds coated with hard-to-remove soil
- Infected seeds and root tissue are light brown in color
- Bare patches where plants fail to emerge
- Emerged plants are chlorotic, stunted, with poor vigor

FIGURE 1 - Infected root radical and infected seed tissue coated in soil
FIGURE 2 - Washed infected seed
FIGURE 3 - Infected roots with pinching-off of secondary roots and discoloration

FACTORS FAVORING DEVELOPMENT
- Planting into cool (below 50 degrees Fahrenheit) and compacted soils
- Deep seeding (more than 2 inches)
- Poor quality/old seed
- Soil is water-saturated at or soon after planting

IMPORTANT FACTS
- Manage with metalaxyl seed treatment, shallow seeding in warm soils and planting high vigor seed
- Effective seed treatments are available for metalaxyl-resistant *Pythium*
- Kabuli varieties are more susceptible than desi
- Resistant kabuli varieties are not available
- Commonly confused with Fusarium and Rhizoctonia root rot and water logging
Rhizoctonia seed, seedling, and wet root rot

Rhizoctonia solani

Photo: M. Wunsch, NDSU

Figure 1

Figure 2

Figure 3
Rhizoctonia seed, seedling, and wet root rot

Rhizoctonia solani

AUTHORS: Michael Wunsch and Erin E. Gunnink Troth

SYMPTOMS
- Seed decay and damping-off, resulting in poor emergence
- Sunken reddish to brown lesions on the epicotyl and tap root
- Distribution may be patchy to widespread in a field

FIGURE 1 - Reduced stand establishment and plant vigor resulting from high *Rhizoctonia* pathogen pressure

FIGURE 2 - Cotyledon rot and a sunken lesion at the seed attachment site

FIGURE 3 - Older lesions turn black as secondary microbes invade diseased tissues

FACTORS FAVORING DEVELOPMENT
- Cool, wet soils
- Damage from herbicide carryover

IMPORTANT FACTS
- Plant residues and soil can harbor the pathogen
- Wide host range includes faba bean, dry bean, field pea, lentil, soybean, canola and sunflower
- Fungicide seed treatments are highly effective, particularly SDHI (FRAC 7) fungicides
- Commonly confused with other root rots and often occurs in a complex with them
Dry Root Rot

Macrophomina phaseolina

Figure 1

Photo: M. Senthil-Kumar, NIPGR

Figure 2

Photo: M. Senthil-Kumar, NIPGR

Figure 3

Photos: M. Senthil-Kumar, NIPGR
Dry Root Rot
Macrophomina phaseolina

AUTHORS: Malaika Ebert and Muthappa Senthil-Kumar

SYMPTOMS
• Rapidly dying plants scattered throughout the field during reproductive growth stages
• Taproot dry and dark without lateral roots
• Lower taproot often missing, easy to uproot plants

FIGURE 1 - Field symptoms with straw-colored plants (arrow)
FIGURE 2 - Diseased plants are straw-colored with brittle and rotten primary taproot
FIGURE 3 - Black microsclerotia on the exterior and interior of the stem (arrow)

FACTORS FAVORING DEVELOPMENT
• Hot and dry conditions, with daily minimum above 68 degrees Fahrenheit and maximum above 86 degrees Fahrenheit
• Drought stress
• Poor or sandy soil

IMPORTANT FACTS
• Pathogen is seedborne, soilborne and survives on infected residue as microsclerotia
• Resistant cultivars are available
• Survives in soil for more than 12 months
• Fungicide seed treatment or preventative foliar fungicides help manage disease
• Pathogen has a broad host range of over 500 plant species, including many legumes
• May be confused with Fusarium wilt and other root rots

Card 3 of 12
Fusarium root rot

Fusarium species

Figure 1

Photo: L. Porter, USDA-ARS, Prosser, Wash.

Figure 2

Photo: L. Porter, USDA-ARS, Prosser, Wash.
Fusarium root rot
Fusarium species

AUTHOR: Lyndon D. Porter

SYMPTOMS
- Yellowing and necrosis of foliage at plant base and moving upwards
- Dark black, reddish or brown root rot beginning at seed attachment point and spreading to roots
- Stunting
- Symptoms can develop early but are most pronounced at flowering

FIGURE 1 - Black discoloration of infected roots and progressive yellowing of foliage from base upwards

FIGURE 2 - Loss of secondary roots (middle plant)

FACTORS FAVORING DEVELOPMENT
- Compacted soil and plant stress
- Short chickpea crop rotations (two-year rotations)
- Warm, moist soil (68 to 82 degrees Fahrenheit)

IMPORTANT FACTS
- Pathogen survives in soil and on seed
- Often associated with other root rots
- No known cultivars with complete resistance
- Alternate hosts include peas and lentils
- Commonly confused with Rhizoctonia and Black streak root rots
Fusarium wilt

Fusarium oxysporum f. sp. *ciceri*

Figure 1

![Photo: L. Porter, USDA-ARS, Prosser, Wash.]

Figure 2

![Photo: L. Porter, USDA-ARS, Prosser, Wash.]

Figure 3

![Photo: L. Porter, USDA-ARS, Prosser, Wash.]

PP2072-5
Chickpea Disease Diagnostic Series
Fusarium wilt

Fusarium oxysporum f. sp. ciceri

AUTHOR: Lyndon D. Porter

SYMPTOMS
- Symptoms typically appear at flowering
- Drooping, wilted, dull-green leaves
- Leaf symptoms may be more severe on one side of the plant than the other

FIGURE 1 - Scattered distribution of infected plants dying in the field

FIGURE 2 - Leaf yellowing, wilting and death progresses from lower canopy upward

FIGURE 3 - Dark brown to black vascular stem tissue near plant base

FACTORS FAVORING DEVELOPMENT
- Warm soil temperatures (77 to 86 degrees Fahrenheit), especially during early growth stages
- Short chickpea crop rotations (two-year or less)
- Planting infected seed and susceptible cultivars

IMPORTANT FACTS
- Races 0, 1A, 1B/C, 5 and 6 are found in the U.S.
- Cultivars vary in resistance to different races
- Pathogen has two pathotypes, one causes slow yellowing, the other wilt
- Commonly confused with Fusarium root rot and abiotic stresses such as waterlogging
Verticillium wilt

Verticillium dahliae and Verticillium albo-atrum

Photo: M. Ebert, NDSU

Figure 1

Figure 2

Figure 3
Verticillium wilt
Verticillium dahliae and Verticillium albo-atrum

AUTHORS: Dimitri Fonseka, Julie Pasche and Malaika Ebert

SYMPTOMS
• Leaves turn yellow, wilt and eventually die
• Light brown discoloration of vascular tissue in the stem

FIGURE 1 - Yellowing of leaves and dead leaf tissue
FIGURE 2 - Uneven necrosis of leaflets moving up stem
FIGURE 3 - Light-brown discoloration of the vascular tissue (arrow)

FACTORS FAVORING DEVELOPMENT
• Warm, moist soils (61 to 68 degrees Fahrenheit)
• Warm air temperatures (72 to 82 degrees Fahrenheit)
• Planting susceptible cultivars

IMPORTANT FACTS
• The pathogen is spread in irrigation water, on farm machinery and via infested seed
• Verticillium can survive in the soil for up to 10 years
• Verticillium has a broad host range which includes woody and herbaceous plants. Rotation to non-host crops (small grains) is recommended
• Sanitation of farm equipment between fields reduces spread
• Commonly confused with Fusarium wilt and drought stress
Ascochyta blight
Ascochyta rabiei
Ascochyta blight
Ascochyta rabiei

AUTHOR: Weidong Chen

SYMPTOMS
• Leaf lesions are initially water-soaked, irregular flecks and/or circular to oval lesions, with concentric ring pattern of small brown pycnidia
• Stem lesions develop at nodes, elongate and cause stem breakage
• Shriveled seed with brown discoloration

FIGURE 1 – Leaf lesion with pycnidia and water-soaked border
FIGURE 2 – Ascochyta blight lesion girdling the stem
FIGURE 3 – Pod lesion with concentric rings of pycnidia

FACTORS FAVORING DEVELOPMENT
• Moderate temperatures (60 to 77 degrees Fahrenheit) and frequent rainfall
• Short rotation interval between chickpea crops
• Planting chickpea adjacent to where chickpea was planted the previous year

IMPORTANT FACTS
• Pathogen survives in crop residue and is seed-borne
• Pathogen host range is limited to chickpeas
• Strobilurin (QoI) fungicide resistance has been documented
• Plant disease-free seed with fungicide seed treatment
• Managed with minimum three-year crop rotation, less susceptible cultivars and timely application of foliar fungicides
Alternaria Blight

Alternaria alternata

Figure 1

![Image of Alternaria Blight on chickpea leaves](Photo: M. Wunsch, NDSU)

Figure 2

![Image of Alternaria Blight on chickpea plant](Photo: M. Wunsch, NDSU)
Alternaria Blight

Alternaria alternata

AUTHOR: Malaika Ebert

SYMPTOMS
• Symptoms occur on all above-ground plant parts
• Small, water-soaked, circular lesions turn reddish brown to purple
• Infected flowers and leaves may turn straw-colored before falling off
• Infected seed is shriveled and blackened
• In moist conditions, infected plants appear black from fungal sporulation

FIGURE 1 – Reddish-brown lesions on stems and leaves with yellowing and dead tissue
FIGURE 2 – Foliar symptoms of Alternaria blight

FACTORS FAVORING DEVELOPMENT
• Planting infected seed and susceptible cultivars
• Warm temperatures (75 to 82 degrees Fahrenheit) and high humidity (above 85%)
• Older plants are more susceptible

IMPORTANT FACTS
• Pathogen has broad host range including lentil, pea, mungbean and cowpea
• Pathogen survives in seed for up to 20 months
• Infected seed may be unfit for human or livestock consumption
• Manage with disease-free seed, resistant cultivars and seed and foliar applied fungicides
• May be confused with Ascochyta or Stemphylium blight
Stemphylium blight

Stemphylium species

Photo: M. Burrows, MSU

Figure 1

Figure 2

Photo: M. Burrows, MSU
Stemphylium blight

Stemphylium species

AUTHOR: Uta McKelvy

SYMPTOMS
- Develops as large irregular patches in the field
- Older leaf lesions may develop yellow or gray borders
- Leaf loss may occur
- Small, elongated, brown spots on the stems

FIGURE 1 - Initial lesions are small, roughly circular and brown

FIGURE 2 - Leaf lesions merge, develop irregular shapes and cover large areas

FACTORS FAVORING DEVELOPMENT
- Cool temperatures (59 to 68 degrees Fahrenheit) and high humidity
- Excessive vegetative growth
- Disease usually develops at and after flowering

IMPORTANT FACTS
- Disease is present in the U.S. but is of minor importance
- Pathogen is transmitted on/in residue, soil and seed
- No fungicides are registered for disease control
- May be confused with Alternaria blight and Ascochyta blight
Sclerotinia stem and crown rot

Sclerotinia sclerotiorum, S. minor and S. trifoliorum

Photo: M. Wunsch, NDSU

Figure 1

Figure 2

Figure 3
Sclerotinia stem and crown rot
Sclerotinia sclerotiorum, *S. minor* and *S. trifoliorum*

AUTHOR: Michael Wunsch

SYMPTOMS
- First observed as water-soaked lesions
- Lesions enlarge and become bleached
- White fluffy fungal growth may appear under high humidity
- Hard, black sclerotia may appear late in the season
- Wilting

FIGURE 1 - Premature senescence of plant caused by a lesion girdling the stem

FIGURE 2 - Sclerotinia stem rot lesions typically exhibit a bleached coloration

FIGURE 3 - Round sclerotia

FACTORS FAVORING DEVELOPMENT
- Cool, wet weather particularly after canopy closure
- Dense canopy
- Tight crop rotations with other susceptible crops including other legumes, sunflower and canola

IMPORTANT FACTS
- The pathogen persists in the soil as sclerotia for many years
- Sclerotinia stem rot often develops concurrently with Ascochyta blight and Botrytis gray mold
- Fungicides must be applied preventatively for successful Sclerotinia stem rot management
- Fungicides have no efficacy against Sclerotinia crown rot
Botrytis gray mold

Botrytis cinerea

Figure 1

Photo: M. Wunsch, NDSU

Figure 2

Photo: M. Wunsch, NDSU

Figure 3

Photo: M. Wunsch, NDSU
Botrytis gray mold
Botrytis cinerea

AUTHORS: Michael Wunsch and Audrey Kalil

SYMPTOMS

- Water-soaked lesions on leaves, stems, flowers and pods that turn gray to dark brown
- Fluffy, gray mold produced under humid conditions
- Flower drop and seed abortion

FIGURE 1 - High humidity promotes abundant gray sporulation on lesions
FIGURE 2 - Stem symptoms include brown speckling and lesions that girdle the stem
FIGURE 3 - Diseased pods are initially brown and become gray from sporulation when humid

FACTORS FAVORING DEVELOPMENT

- Planting infested seed
- Dense crop canopy
- High humidity (above 95%) and moderate temperatures (68 to 77 degrees Fahrenheit)

IMPORTANT FACTS

- Pathogen has a wide host range of more than 100 plant species
- Pathogen is seedborne, survives in the soil and on infected plant residue
- Disease progresses rapidly
- Foliar fungicides have poor efficacy due to difficulty achieving good coverage inside the canopy
- Seed treatment with effective fungicides reduces seed to seedling transmission

Card 11 of 12
Pea enation mosaic

Pea enation mosaic virus (PEMV)

Figure 1

Figure 2
Pea enation mosaic

Pea enation mosaic virus (PEMV)

AUTHOR: Lyndon D. Porter

SYMPTOMS

- Small spots or flecks on leaves
- Severe stunting
- Leaves and pods are malformed

FIGURE 1 – “Windows” of yellow spots and streaks on distorted and curled leaves and close-up of “windows” on leaflets

FIGURE 2 – Close-up of distorted leaflets with PEMV (see arrows)

FACTORS FAVORING DEVELOPMENT

- Virus-carrying aphids, such as the pea aphid, present and feeding on plants
- Warm spring temperatures favoring early aphid development and migration
- Infections at early growth stages are more severe

IMPORTANT FACTS

- All currently available commercial cultivars are susceptible to PEMV
- PEMV is not seed-transmitted
- Insecticides to manage aphids may reduce secondary spread of PEMV
- Pea, lentil, faba bean and vetch are also susceptible
- Commonly confused with thrips, herbicide or other virus damage