Course	
Number/Name	Description
BMOLE 6030 -	Analysis of single and multidimensional steady-state and transient
Biotransport	problems in momentum, mass, and energy transfer in biological systems.
Phenomena	Mathematical similarities and differences in these mechanisms are
	stressed, and mathematical descriptions of physiological and engineering
	systems are formulated. Preq: CHE 3300 and MATH 2080.
CHE 6120 -	Design-oriented course in synthetic polymers. Topics include reactor design
Polymer	used in polymer production, effect of step versus addition kinetics on reactor
Engineering	design, epoxy curing reactions, polymer solubility, influence of
	polymerization and processing conditions on polymer crystallinity. Preq: CH 2240 and CH 3320. 3 Credits
CHE 6130 -	Presents fundamental concepts of polymeric composite materials. Main
Polymer	topics include classification of polymeric matrices; flow behavior and visco-
Composite	elastic properties of fiber precursors and polymeric matrices; and physical
Engineering	and mechanical properties of composites. Preq: CH 2240; and CHE 4120 or
	MSE 4150; or consent of instructor. 3 Credits
CHE 6140 -	Green chemistry/engineering principles are applied to process and product
Green	design. Green engineering metrics are applied to quantify the sustainability,
Engineering	life cycle and environmental impact of chemical technologies, processes and
	products. Emphasis is placed on industrial sustainability, product
	innovation, risk assessment, policy and societal implications. Preq: CHE
	2110 and MATH 1080 or consent of instructor. 3 Credits
CHE 6150 -	Addresses the technological environmental, political, social and economic
Alternative	fundamentals associated with using alternative energy sources to meet
Energy	global energy needs. Engineering analysis is used to evaluate several
	alternative energy technologies, including biomass, geothermal,
	hydropower, nuclear, solar and wind. Preq: CHE 2200 and CHE 2300 or
	consent of instructor. 3 Credits
BMOL 6250 -	Introduction to basic principles of biomolecular engineering: the
Biomolecular	purposeful manipulation of biological molecules and processes applied to
Engineering	problems and issues in the life sciences, biotechnology, and medicine.
	Topics include carbohydrates, proteins, nucleic acids, and lipids with
	emphasis on their structure-property-function relations; molecular
	recognition; biochemical pathway engineering; and cell growth. Preq:
	CHE2200 and CH 2300.
BMOL 6270 –	Students learn principles of membrane science and technology and study
Membranes for	membrane applications in the biotechnology and biomedical industries.
Biotechnology &	Advanced topics include surface modification of membranes, synthesis of
Biomedicine	porous membranes for biomedical applications such as tissue engineering,
	environmentally responsive membranes, and membrane-based biomedical
	devices. Preq: CHE 3300.

Appendix 2 Chemical and Biomolecular Engineering Courses

Course	
Number/Name	Description
BMOL 6290 –	Chemical engineering principles are applied to bioprocess design.
Bioprocess	Emphasis is placed on designing bioreactors and bioseparation unit
Engineering	operations used in industrial biotechnology and the chemical process
Lingineering	industry. Application of bioreaction and bioseparation operations to other
	chemical processes are discussed. Preq: CHE 3300 and CHE 4500.
CHE 6450 -	Topics not covered in other courses, emphasizing current literature, research
Selected Topics	and practice of chemical engineering. Topics vary from year to year. May
in Chemical	be repeated, but only if different topics are covered. Preq: Consent of
Engineering	instructor. 3 Credits
CHE 8010 -	Introduction to graduate research, with a focus on ethics, safety and
Graduate	universal research skills. Topics include ethics, lab safety, chemical literacy,
Research Skills	scientific presentations, grant writing, experimental design, and career
and Ethics	development. 1 Credit
CHE 8040 -	Study of equilibria of physical and chemical systems and generalized
Chemical	properties of hydrocarbons. Includes application of thermodynamic
Engineering	methods in equipment design. 3 Credits
Thermodynamics	interious in equipment atorgin o creatio
CHE 8050 -	Kinetics of chemical reactions, particularly in design and operation of
Chemical	chemical reactors. 3 Credits
Engineering	
Kinetics	
CHE 8140 -	Numerical solution techniques as applied to chemical process systems; finite
Applied	difference techniques for partial differential equations stressing applied
Numerical	numerical methods rather than theoretical numerical analysis. Standard
Methods in	methods for ordinary differential equations are reviewed. Preq: Consent of
Process	instructor. 3 Credits.
Simulation	
CHE 8180 -	Processing of polymeric materials; polymer flow characterization;
Polymer	extrusion; mixing; filtration; injection molding; fiber and film formation;
Processing	physical science principles such as fluid flow, heat transfer, crystallization
_	and rheology applied to polymer processing operations. 3 Credits.
CHE 8190 -	Time- and frequency-dependent behavior of structural polymers and their
Viscoelastic	composites; interrelationship between various viscoelastic properties;
Properties of	influence of aging; prediction of composite viscoelastic response by
Polymers and	application of the Viscoelastic Correspondence Principle. 3 Credits.
Polymer	
Composites	
CHE 8230 -	Stagewise contact operations emphasizing distillation; vapor-liquid
Mass Transfer	equilibria; integral and differential distillation; binary and multicomponent
and Stagewise	rectification; analytical methods; batch rectification; azeotropic and
Contacts	extractive distillation. 3 Credits.
Operations	

Course	
Number/Name	Description
CHE 8340 - Polymer Thermodynamics	Classical and statistical thermodynamics applied to problems in chemical engineering emphasizing modern methods of predicting thermophysical properties of gases and liquids. Students' and instructor's interests influence course content but usually include fundamentals of applied statistical mechanics, molecular theory of dense fluids, descriptions of intermolecular forces, gas-liquid and liquid-liquid critical phenomena, theories of interfacial phenomena and adsorption, statistical mechanics of polymeric systems, statistical mechanics of polydispersed systems, computer simulation of fluids by Monte Carlo, molecular dynamics and stochastic dynamics methods. Preq: CHE 8040. 3 Credits
CHE 8450 – Modern Biomolecular Engineering	This course covers modern literature in the general field of biomolecular engineering. The student presenting the papers is meant to lead the discussion on the major findings, and analyze the methods used, their applicability, and discuss their impact on the field and their own work. 3 Credits.
CHE 8450 – Multiscale Modeling	This course will cover fundamentals of quantum, atomistic, mesoscopic and continuum modeling, highlight the fundamental theory and implementation at each scale and on methods and algorithms that facilitate bridging these scales, focus on the practical applications of these approaches in tackling scientific problems to explain macroscopic and observable phenomena, and discuss common recipes to overcome the challenges and pitfalls of these approaches. 3 Credits.
CHE 8450 – Systems Biology	This course is a survey of contemporary methods and approaches used in systems biology and pharmacology. We will cover theory of the methods, how they work, and then apply them in practice to real datasets using python (primarily). We cover three areas: bioinformatics/big data; dynamic models; pharmacology. 3 Credits.
CHE 8450 – Molecular Modeling	The goal of this course is to provide the student with an understanding of the methods, capabilities, and limitations of molecular simulation (quantum and molecular mechanics simulations). It is expected that completion of this course will leave the student with a much deeper understanding of the molecular basis for the physical behavior of matter. 3 Credits.
CHE 8450 – Catalysis	This course will address many of the key principles of chemical catalysis including: types of catalysts (enzymatic, homogeneous, heterogeneous), chemical reactor design, catalyst design, catalyst characterization, modeling of diffusion and reaction phenomena, and other related topics. 3 Credits.
CHE 8450 – Diffusion in Polymers	The primary goal of this course is to understand the fundamentals that govern the mass transfer of small and large molecules in polymeric materials. The student should gain more knowledge in the areas of transport, thermodynamics, and polymer physics. 3 Credits.
CHE 8450 – Energy Storage	This course covers many topics relevant to carbon nanomaterial synthesis, characterization and manufacturing with a focus on energy applications. 3 Credits

Course	
Number/Name	Description
in Carbon	
Nanomaterials	
CHE 8900 -	This course guides mentors to become more reflective and effective
Mentoring	mentors. Students will learn, implement, and evaluate various approaches to
	mentoring. 1 Credits
CHE 8950 -	Series of weekly, one-hour seminars given by students, faculty and guests
Chemical	on topics of current interest. Credits earned in this course do not apply to or
Engineering	alter the required minimum of six research hours for the MS degree or the
Graduate	required 30 research credit hours for the PhD degree. To be taken Pass/No
Seminar	Pass only. 1 Credits
CHE 9910 -	Doctoral dissertation research. 1-12 Credits.
Doctoral	
Dissertation	
Research	

Courses for non-traditional students.

CHE 2110-Mass	Introduction to fundamental concepts of chemical engineering, including
and Energy	mass and energy balances, PVT relationships for gases and vapors, and
Balances	elementary phase equilibria; problem-solving and computer skills are
	developed in lab. Preq: CH 1020 and MATH 1080 and PHYS 1220 and CHE
	1300. Coreq: CHE 2111. 4 Credits
CHE 2200-	Topics include first and second laws of thermodynamics, ideal gases, PVT
Chemical	properties of real fluids, energy balances with chemical reactions, and
Engineering	thermodynamic properties of real fluids. Preq: CHE 2110 and MATH 2060.
Thermodynamics	3 Credits
CHE 2300-	General principles of chemical engineering and study of fluid flow, fluid
Fluids/Heat	transportation, and heat transmission. Special emphasis is placed on theory
Transfer	and its practical application to design. Preq: CHE 2110. Preq or concurrent
	enrollment: CHE 2200 and MATH 2060. 4 Credits
CHE 3300 -	Study of mass transport fundamentals and application of these fundamentals
Mass Transfer	to separation technologies, with emphasis on gas absorption, stripping,
and Separation	distillation, and liquid-liquid extraction. Preq: CHE 2200 and CHE 2300.
Processes	Preq or concurrent enrollment: CHE 3210. 4 Credits
CHE 4500-	Review of kinetics of chemical reactions and an introduction to the analysis
Chemical	and design of chemical reactors. Topics include homogeneous and
Reaction	heterogeneous reactions, batch and continuous flow reaction systems,
Engineering	catalysis, and design of industrial reactors. Preq: CHE 3210 and CHE 3300.
	3 Credits