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Problem #1. (34%) Member BCD shown in the figure has a uniform square cross section of area A.
The member is subjected to a horizontal force P. Assuming the effect of shear is negligible,
determine the support reaction at C and the horizontal displacement at D in terms of applied force P,
modulus of elasticity E, radius of curvature R, length L, cross-sectional area A and the moment of
inertia of the cross section I.
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Problem #2. (33%) A cantilever beam with rectangular cross-section is loaded by a uniformly
distributed shear stress t applied to its upper surface only, as shown. Obtain expressions for the x-
direction normal stress at A and at B. Neglect stress concentration effects. Also determine the
deflection components at point C.
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Problem #3. (33%) A wire of cross-sectional area A, length L and Young’s modulus E is initially
straight between two supports as shown below by the dashed line. It can be assumed that there is no
force in the wire in this initial configuration. If a weight W is applied to the center of the wire,
determine the relationship between this weight and the vertical displacement, &, that is defined in the
figure, where now the wire is represented by the solid line. Assume linear material behavior for the

wire.
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- Fundamental Equations of Mechanics of Materials ——— S—
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Material Property Relations
Poisson’s ratio
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Properties of plane areas

Point g is the centroid
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Deflections and slopes of uniform beams

Deflection Slope
Beam and leading (+ up) (+ CCW) Equations
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Basic equations of isotropic linear elastiticy.

or oo or
i Y- Yiy=o,

80')( +87Xy +8TXZ + X IO,
OX oy 0z OX oy oz

0Ty, " 07y, +8Jzz
OX oy 0z

ou ov oW
- £, =—

=—, P =—,
x' Y oy oz

_ou ov _ow_ au _ov_ ow
e T T T Ta Y T ey

+7Z =0.

Ex

Ey =é[(7x —v(ay +GZ) +al, &y =%[c7y —V(O'X + 0o, )]+aT,
& =é[62 —V(O'X +oy )]+ ol

1 1 1
7 xy :Efxya ¥ xz :ETXZ' Yy :Efzy-

Plane stress and strain in polar coordinates.
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Kk =3—4v for plane strain and x = (3—v)/(L+v) for plane stress.
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