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Problem #1. (33%) Three bars are made of steel with a Young’s modulus of 29x10° psi. The bars
form a pin-connected truss as shown. For a force of P = 5000 Ib, determine the vertical displacement
of joint A. Each bar has a cross-sectional area of 2 in®.

P




Problem #2. (34%) Long, slender steel beams often have a cross-section in the shape of an “I” with
top and bottom flanges and a thin web between them. In the bridge beam pictured below, the top
flange of the beam is embedded in a concrete deck and cannot be seen. (Don’t be distracted by the
piping that happens to be supported on the outside of this bridge beam). Let the flanges have width
W and thickness T;. Let the overall depth (or height) of the I-shape be “h” and the web thickness be
Tw.

a) Why is the I-shape a good, i.e. efficient, use of material in most cases?

b) What is the main structural purpose of the flanges?

c) What is the main structural purpose of the web?

d) What determines how wide or narrow and how thick or thin the flanges should be? Are there
upper or lower limits to the ratio W/T?

e) What determines how deep or shallow and how thick or thin the web should be? Are there
upper or lower limits to the ratio h/T,?

f) Sometimes we see that transverse stiffeners
(small vertical steel plates identified in the
picture) are added to the web of the beam at
certain locations along the beam length. Why
are these stiffeners sometimes required? Would
their spacing “a” need to be uniform along the
whole length of the beam or could this spacing
vary along the length? Why or why not?

g) The maximum allowable compression stress in
the compression flange is a function of whether
or not the flange is braced laterally by Transverse Stiffeners
connecting it to a floor or deck structure (as in
this picture) or connecting it to other parallel beams at certain locations along the length of
the beam. Why does the allowable compressive stress depend on the presence and spacing of
lateral bracing?

h) Sometimes long slender beams have a cross-section in the shape of a hollow, rectangular tube
rather than an I-shape, despite the higher cost per pound of the tube shape. What is the main
structural advantage that the hollow tube shape provides compared to the I-shape that might
make the tube preferable in certain cases?




Problem #3. (34%)

Transverse shear force P in the vertical direction is applied to three cantilever beams with thin-
walled, open circular cross sections shown in the figure. The beams have identical length and
identical cross sections except the position of the open slit.

(a) Draw the shear flow on the cross sections.

(b) On each cross section, approximately mark the location where the magnitude of the transverse
shear stress is the maximum, explain your answer.

(c) Are the magnitudes of the three maximum shear stresses the same? If not, which one is the largest
and which one is the smallest? Explain your answer.

(d) Will the cantilever beams be twisted by the loading? If yes, which beam has the largest angle of
twist, and which one has the smallest? Explain your answer.
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Material Property Relations
Poisson’s ratio
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Deflections and slopes of uniform beams
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Basic equations of isotropic linear elastiticy.
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Plane stress and strain in polar coordinates.
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Kk =3—4v for plane strain and x = (3—v)/(L+v) for plane stress.
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