

Finding Vulnerabilities of Autonomous Vehicle Stacks to
Physical Adversaries

Final Report

by

Z. Berkay Celik
Purdue University

Satish V. Ukkusuri, Purdue University
Alvaro Cardenas, University of California, Santa Cruz
Daniel J. Fremont, University of California, Santa Cruz

May 2025

NATIONAL CENTER FOR TRANSPORTATION
CYBERSECURITY AND RESILIENCY (TraCR)

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 2 of 21

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and
the accuracy of the information presented herein. This document is disseminated in the interest of
information exchange. The report is funded, partially or entirely, by the National Center for
Transportation Cybersecurity and Resiliency (TraCR) under Grant No. 69A3552344812 and
69A3552348317 which is headquartered at Clemson University, South Carolina, USA, from the
U.S. Department of Transportation’s University Transportation Centers Program. The U.S.
Government assumes no liability for the contents or use thereof.

Non-exclusive rights are retained by the U.S. DOT.

CONTACTS

For more information:

Z. Berkay Celik
LWSN 1203, 305 N. University Street
West Lafayette, IN 47907-2107, USA
Phone: 765-496-1761
Email: zcelik@purdue.edu

TraCR
Clemson University
One Research Dr
Greenville, SC 29607
tracr@clemson.edu

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 3 of 21

ACKNOWLEDGMENT

This work is based upon the work supported by the National Center for Transportation
Cybersecurity and Resiliency (TraCR), a U.S. Department of Transportation National University
Transportation Center headquartered at Clemson University, Clemson, South Carolina, USA. Any
opinions, findings, conclusions, and recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of TraCR. The U.S. Government assumes no
liability for the contents or use thereof.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 4 of 21

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Technical Report Documentation Page

1. Report No. 5 2. Government Accession No. N/A 3. Recipient’s Catalog No. N/A

4. Title and Subtitle
Finding Vulnerabilities of Autonomous Vehicle Stacks to Physical Adversaries

5. Report Date: May 2025

6. Performing Organization Code: N/A

7. Author(s)
Z. Berkay Celik, Ph.D.; https://orcid.org/0000-0001-7362-8905
Alvaro Cardenas, Ph.D.; https://orcid.org/0000-0002-5142-9750
Daniel J. Fremont, Ph.D.; https://orcid.org/0000-0002-9992-9965
Satish V. Ukkusuri, Ph.D.; https://orcid.org/0000-0001-8754-9925

8. Performing Organization Report
No. 5

9. Performing Organization Name and Address
National Center for Transportation Cybersecurity and Resiliency (TraCR),
Clemson University, 414 A One Research Dr, Greenville, SC 29607
Purdue University, 610 Purdue Mall, West Lafayette, IN 47907
University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95064

10. Work Unit No. N/A

11. Contract or Grant No.
69A3552344812 and 69A3552348317

12. Sponsoring Agency Name and Address
U.S. Department of Transportation,
Office of the Assistant Secretary for Research and Technology,
1200 New Jersey Avenue, SE, Washington, DC 20590

13. Type of Report and Period
Covered
Final Report, 01/01/2024 - 12/31/2024

14. Sponsoring Agency Code OST-R

15. Supplementary Notes
Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University
Transportation Centers (UTC) program.

16. Abstract
Autonomous Driving (AD) vehicles must interact and respond in real-time to multiple sensor signals indicating the behavior of
other agents in the environment, such as other vehicles, and pedestrians near the ego vehicle (i.e., the vehicle itself). While
autonomous vehicle (AV) developers tend to generate numerous test cases in simulations to detect safety and security problems,
to the best of our knowledge, they are not testing for malicious physical interactions from attackers, such as by placing emergency
cones in the hood of an AV or driving maneuvers that nearby human drivers or other AVs might perform.
The main goal of our project is to develop automatic testing tools to evaluate the safety and security of autonomous vehicle
stacks against unanticipated critical physical conditions created by attackers. Specifically, we aim to demonstrate adversarial
driving maneuvers in different real-world scenarios, highlighting the potential consequences for AV safety and security, build an
attack framework in a simulation environment to study the optimal discovery of adversarial driving maneuvers, and contribute
to the development of a skilled AV security workforce. In this way, this effort aims to enable the deployment of increasingly
trustworthy transportation systems.

17. Keywords
Autonomous Driving, Autonomous Vehicles, AV Security,
Adversarial Attacks, Simulation, Automated Testing, AV Safety

18. Distribution Statement

No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of
Pages
21

22. Price

N/A

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 5 of 21

TABLE OF CONTENTS

DISCLAIMER .. 2

CONTACTS ... 2
ACKNOWLEDGMENT... 3
EXECUTIVE SUMMARY .. 7
CHAPTER 1 ... 9

Background ... 9
1.1 Background and Motivation ... 9
1.2 Project Objectives and Impacts .. 9

CHAPTER 2 ... 11
2.1 Objective ... 11
2.2 Example of Safety Properties.. 11

CHAPTER 3 ... 13
3.1 Generating Scenarios for Specific Properties ... 13
3.2 Adversarial Vehicle Parameterization .. 13

CHAPTER 4 ... 15
4.1 Overview ... 15
4.1 Sparse Reward-Adaptive Generative Flow Networks .. 16

CHAPTER 5 ... 20
Conclusions ... 20
REFERENCES ... 21

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 6 of 21

List of Tables

Table 1: Illustration of chapter objectives and their connection……….…………………………10

List of Figures

Figure 1: Illustration of highway environment in our experiments………………………………15

Figure 2: Illustration of the OpenPilot control software in the CARLA simulator……………….15

Figure 3: Illustration of the challenges caused by sparse rewards in GFlowNet training…………17

Figure 4: Performance comparison of our approach with baselines………………………………18

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 7 of 21

EXECUTIVE SUMMARY

Autonomous Driving (AD) vehicles are designed to navigate and interact with their environment
through the analysis of real-time sensor data. However, this reliance on sensor input introduces a
potential vulnerability: adversarial physical attacks. These attacks, where malicious actors
carefully craft maneuvers can induce AVs to operate unsafely, potentially leading to collisions or
other dangerous situations. This research sought to expose and mitigate this critical vulnerability
by developing a suite of automatic testing tools. These tools are designed for the rigorous
evaluation of the security and resilience of Autonomous Vehicle (AV) stacks when confronted
with adversarial conditions.

The methodology of this project was structured around three key phases. First, the research
involved the formalization of safety properties using Linear Temporal Logic (LTL). This process
established precise definitions of safe AV operation, drawing upon established standards from the
National Highway Traffic Safety Administration (NHTSA) and relevant driving regulations. To
facilitate this formalization, Large Language Models (LLMs) were employed to extract and
summarize safety, security and functional properties (the requirements a vehicle should satisfy to
operate correctly), ensuring a systematic and comprehensive approach. Second, the project focused
on the construction of a simulation framework capable of generating a wide array of adversarial
scenarios. This framework, built upon the Scenic programming language, allowed for the precise
parameterization of initial conditions, including the behavior of attacking vehicles and various
environmental factors. A significant component of this phase was the integration of AV control
software, such as OpenPilot and Autoware, with the CARLA simulator. Third, the research
involved the development and application of search algorithms, specifically Generative Flow
Networks (GFlowNets), to efficiently explore the generated scenarios. This exploration aimed to
identify adversarial maneuvers capable of violating the defined safety properties, enabling the
systematic discovery of vulnerabilities and the assessment of their potential consequences.

The key findings of this research are multifaceted. The study successfully demonstrated the
feasibility and potential severity of adversarial driving maneuvers across a range of simulated, yet
realistic, scenarios. Furthermore, the developed simulation framework, in conjunction with
GFlowNets, proved to be effective in the systematic discovery of adversarial maneuvers capable
of compromising AV safety. The research also identified and addressed challenges associated with
integrating complex AV control software with simulation environments, an essential step towards
achieving realistic testing conditions. Finally, the project yielded new techniques to improve the
performance of GFlowNets within sparse reward environments, a common characteristic of
adversarial scenario generation.

In conclusion, this research provides a valuable framework, along with a set of associated tools
and methodologies, for the rigorous security testing of AVs. The findings of the project show the
critical importance of explicitly considering adversarial physical attacks throughout the
development lifecycle of autonomous vehicles. To further advance this field, future work would
focus on several key areas. These include expanding the library of formalized safety properties to
encompass a broader spectrum of driving scenarios and edge cases, developing more sophisticated

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 8 of 21

models of attacker behavior and capabilities to generate more realistic and challenging adversarial
scenarios, and exploring the application of the developed testing methodologies to real-world AV
systems within controlled testing environments.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 9 of 21

CHAPTER 1
Background

1.1 Background and Motivation

Autonomous Driving (AD) vehicles have to interact and respond in real-time to multiple sensor
signals indicating how other autonomous robots, targets, and the environment behave near the ego
vehicle. While autonomous vehicle (AV) developers tend to generate numerous test cases in
simulations to detect problems, to our best knowledge, they are not testing for malicious physical
interactions from attackers, such as placing emergency cones in the hood of an AV or driving
maneuvers that nearby human vehicle drivers or other AV manufacturers can create. For example,
a hostile driving maneuver causing the victim vehicle to crash (while the malicious driver does not
crash) can be identified by malicious actors, and then spread and reproduced by multiple people
worldwide, causing traffic accidents on vehicles with vulnerable AD stacks.

Recently, TraCR members of UCSC and Purdue have introduced two different frameworks ([1],
[2]) to explore the practicability of adversarial physical conditions in real-world environments.
They focused on adversarial driving maneuvers, which are a new class of physical attack against
AD software. Here, the attacker aims to find a (plausible) trajectory near the victim vehicle with
the goal of causing it to behave in an unintended way, such as crashing or driving off the road.

The frameworks proposed by UCSC and Purdue differ in their assumptions about the attacker and
the target AV software components. However, both provide an overview of the challenges, a
means of discovering adversarial driving maneuvers in practice, and potential solutions to defend
against them. While both frameworks have been shown, to some extent, to be effective in
discovering adversarial driving maneuvers against a variety of AD software, the research on
adversarial driving maneuvers is still in its early stages. In this proposal, we will study the
weaknesses and strengths of both frameworks. Guided by our findings, we will explore creating a
unified framework leveraging the best ideas from each university and explore rigorous measures
of adversarial maneuvers for building a safe and secure AD software stack.

1.2 Project Objectives and Impacts

The main goal of our project is to develop automatic testing tools to evaluate the security of
autonomous vehicle stacks against unanticipated critical conditions created by
attackers. Specifically, we aim to (a) Demonstrate adversarial driving maneuvers in different real-
world scenarios, highlighting the potential consequences to the security of AVs. (b) Build an attack
framework in a simulation environment to study the optimal discovery of adversarial driving
maneuvers. (c) Contribute to creating a workforce skilled in securing AVs and allow the
deployment of increasingly trustworthy transportation systems.

We also inform policymakers of the risks posed by adversarial maneuvers by participating in
public debates and government efforts, and providing technical talks for the target audience.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 10 of 21

In the following we introduce three chapters to achieve these objectives. Table 1 illustrates the
sequential dependency between Chapters 2, 3, and 4. Specifically, it outlines the objectives of each
chapter and clarifies how they logically connect to establish the methodology for evaluating
autonomous vehicle safety against adversarial attacks.

Table 1: Illustration of chapter objectives and their connection

Chapter Title Objectives Connections

2
Formalizing
Safety
Properties

We defined the requirements for safe operation of
autonomous vehicles (AVs) by formalizing safety
properties. The work established a foundation
using temporal logic and involved collecting data
from sources like NHTSA standards and driving
regulations. Large Language Models were used to
aid in creating property summaries, which were
then expressed in a formal logic. The formalized
properties serve as a basis for subsequent tasks
like vulnerability analysis.

Chapter 2 lays the
groundwork by
formalizing safety
properties. These
properties define what
constitutes a "failure" or
"unsafe" behavior of the
autonomous vehicle. This
provides the foundation for
the subsequent chapters.

3
Parameterizing
Initial
Conditions

We detailed the process of building a language to
parameterize initial conditions for testing AVs.
The Scenic framework was used to generate
adversarial scenarios, and a wrapper was
developed to connect safety property propositions
with scenario elements. The chapter also explored
methods for spawning agents in relevant
locations and generating initial conditions for
interactions with other vehicles. Furthermore, the
integration of control software, including
VerifAI, Scenic, and OpenPilot, with the CARLA
simulator, was discussed.

Chapter 3 directly depends
on Chapter 2. It uses the
safety properties defined in
Chapter 2 to create
specific, parameterized
scenarios in a simulation
environment. The
scenarios are designed to
test the AV's behavior
against the defined safety
properties.

4
Exploring
Search
Algorithms

We explored the use of Generative Flow
Networks (GFlowNets) as a search method for
adversarial driving maneuvers. GFlowNets were
chosen for their ability to generate a diverse set of
adversarial scenarios, unlike methods that focus
solely on maximizing rewards. The chapter also
discusses the challenges encountered in training
GFlowNet models, specifically addressing sparse
rewards and numerical instability. To mitigate
these challenges, the research proposed and
evaluated several complementary methods.

Chapter 4 builds upon
Chapter 3. It employs
search algorithms to
explore the scenarios
generated in Chapter 3 and
identify adversarial
maneuvers. The goal is to
find specific inputs or
conditions that cause the
AV to violate the safety
properties defined in
Chapter 2.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 11 of 21

CHAPTER 2
Formalizing Safety Properties

2.1 Objective

The goal of this chapter is to formalize properties for Autonomous Vehicles (AVs) that define the
functional requirements the Automated Driving (AD) stack must adhere to for safe operation.

A foundation was established by defining formal safety properties using temporal logic in our prior
research [1, 2]. The process of collecting data from relevant sources to inform the generation of
diverse safety properties included reviewing NHTSA standards, where the National Highway
Traffic Safety Administration (NHTSA) safety standards for vehicles were adapted into formal
properties, and gathering driving regulations used for licensing tests in various states. These
resources were analyzed to extract essential safe driving behaviors.

To aid in this process, Large Language Models (LLMs) such as Gemini or ChatGPT were utilized
to create summaries of properties from the given resources written in natural language. These
summaries were then used to formally define the properties using propositional variables, logical
operators, and temporal modal operators. Preliminary results indicated that the summaries and
properties were sound, although expressing them in temporal logic presented challenges,
particularly for complex properties.

The analysis and formal representation of a substantial number of safety properties in temporal
logic has been completed. These formalized properties serve as a foundation for subsequent tasks
in the project, such as vulnerability analysis and the development of mitigation strategies.

2.2 Example of Safety Properties

We provide two examples of formal properties. These examples are expressed in Linear Temporal
Logic (LTL) and are illustrative, designed to be adapted to specific NHTSA standards or driving
regulations relevant to your project.

First, we consider the Lane Keeping property:

G (vehicle_in_lane -> F (vehicle_in_lane U (lane_change_initiated -> X G vehicle_in_lane))).

This property states that globally (always), if the vehicle is in its lane, then eventually it will remain
in its lane until a lane change is initiated.

After a lane change is initiated, then in the next state and globally thereafter, the vehicle should be
in its lane (the new lane). Here, G stands for Globally (always), F for Finally (eventually), U for
Until, and X for Next. The propositional variables vehicle_in_lane and lane_change_initiated
represent that the AV is within its designated lane and that a lane change maneuver has been
initiated, respectively. This captures the requirement that lane changes should be deliberate and
controlled, and the vehicle should remain in its lane otherwise.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 12 of 21

In a second example, we consider the Pedestrian Crossing Safety property:

G (pedestrian_crossing_at_crosswalk -> F (vehicle_stopped_before_crosswalk)).

This property expresses that globally (always), if a pedestrian is crossing at a crosswalk, then
eventually the vehicle must come to a complete stop before the crosswalk. The propositional
variables pedestrian_crossing_at_crosswalk and vehicle_stopped_before_crosswalk represent that
a pedestrian is detected crossing the street at a designated crosswalk and that the AV has come to
a complete stop before the crosswalk, respectively. This property emphasizes the AV's
responsibility to yield to pedestrians in crosswalks.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 13 of 21

CHAPTER 3

Building a Language to Parameterize Initial Conditions

3.1 Generating Scenarios for Specific Properties

We build upon our recent work, Scenic [3], a general-purpose probabilistic programming language
for describing driving scenarios. We use the Scenic framework to achieve the adversarial
scenarios. Most challenges are addressed, and initialize scenarios are initialized with different
numbers of agents in different environments.

We developed a wrapper on Scenic's language to connect safety property propositions with the
physical objects and agents within a scenario. This allows for targeted scenario generation relevant
to specific safety properties.

We additionally explored methods to:

• Spawn specific agents (e.g., pedestrians) at appropriate locations based on the safety
property being tested. For instance, scenarios testing pedestrian safety will involve
pedestrians in reasonable locations like sidewalks or crosswalks.

• Generate initial conditions where the victim vehicle interacts with other vehicles (e.g.,

following another vehicle for testing adaptive cruise control).

• Placing vehicles with advanced controller software stacks, such as Autoware or Apollo, in
positions that require several decisions (e.g., close to an intersection or traffic light)

3.2 Adversarial Vehicle Parameterization

We extended Scenic to include parameters that generate adversarial vehicles of different sizes
(sedan, SUV, truck) and with varied initial positions. This allowed the generation of diverse
adversarial maneuvers that could potentially lead to safety property violations. We also pursued
the integration of control software into the CARLA simulator.

Initially, we integrated VerifAI and Scenic with full-stack controllers. This integration enabled the
use of VerifAI capabilities to test the decisions of advanced controllers under various conditions
(e.g., vehicle positions) and their response to attackers. While Scenic can handle simple
controllers, connecting it with advanced controllers presented challenges. For instance, VerifAI
and Scenic use discrete-time simulation, whereas autonomous vehicle controllers operate in real-
time. We successfully implemented a synchronized connection manager that interfaces the Scenic
language, the VerifAI toolkit, the Carla simulator, and a full-stack Autonomous Vehicle driving
software, Autoware. However, this implementation had some limitations. The simulation took
longer than expected because we could not yet make Autoware execute faster than real-time. We

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 14 of 21

made efforts to parallelize the simulation execution. We also encountered issues with correctly
placing the vehicles and explored ways within the CARLA API to resolve this bug. Furthermore,
we expanded the implementation to simplify integration with other full-stack controllers and
develop a more general solution.

Secondly, we aimed to enable OpenPilot, a real-world autonomous driving (AD) software, to
function within the CARLA simulator. This integration sought to facilitate experiments using
customized traffic and environmental settings, providing a controlled and flexible testing
environment for autonomous driving systems. This integration process presented several
challenges. Firstly, OpenPilot and CARLA do not officially support this integration, necessitating
custom solutions. Secondly, the system requires a substantial amount of data for training,
demanding parallel execution capabilities. Additionally, high memory requirements during builds
and potential software version conflicts posed significant hurdles.

To address these challenges, we implemented a custom bridge to connect OpenPilot with CARLA,
enabling automatic communication between the two systems. Furthermore, we dockerized the
implementation, ensuring its compatibility with any x86 architecture with Docker support. This
approach significantly simplified deployment across different servers and machines. The result of
this integration effort is highly beneficial for projects involving OpenPilot testing. It provides a
foundation for parallel data collection, eliminating the need for time-consuming system setups on
multiple machines, and allows for more efficient and scalable testing processes. Moreover, the
dockerized solution enhances the reproducibility and portability of experiments, which is crucial
for our research.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 15 of 21

CHAPTER 4
Exploring Search Algorithms

4.1 Overview

In this chapter, we detail on exploring the potential of using a method called generative flow
network (GFlowNet) [4] to search for adversarial driving maneuvers. Unlike reinforcement
learning (RL) and similar methods that focus on maximizing cumulative rewards (i.e., seeking the
most severe scenarios), GFlowNet aligned outcomes with a predefined reward distribution. This
alignment offered the advantage of generating diverse types of adversarial scenarios.

We developed a program to train GFlowNet and RL models for generating adversarial driving
maneuvers across three simulation environments: (1) a single-lane toy simulation with two victim
vehicles controlled by a random parameterized intelligent driver model (IDM); (2) a gym highway
environment with one victim vehicle controlled by reinforcement learning and five other victim
vehicles controlled by a default IDM; and (3) the CARLA & OpenPilot simulation with one victim
vehicle controlled by OpenPilot and the remaining vehicles controlled by CARLA autopilot.
Figure 1 demonstrates visualization examples of the gym highway environment and the CARLA
& OpenPilot environment.

Figure 1: Illustration of highway environment in our experiments

Figure 2: Illustration of the OpenPilot control software in the CARLA simulator

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 16 of 21

Our initial experiments revealed two challenges in effectively training GFlowNet models. Firstly,
the scarcity of rewards in our problem made it challenging for the model to find useful samples
for weight updates. Secondly, GFlowNet training was susceptible to numerical issues due to its
use of logarithms in loss calculations. For trajectories with very small rewards, the logarithm of
the reward could lead to excessively large values that distort gradient updates, causing the model
to prioritize fitting unimportant low-reward observations.

We addressed these challenges. Specifically, we used a pre-trained RL model as the initial policy
for GFlowNet, which ensured the coverage of high-reward regions. To address the second
challenge, we filtered out samples with extremely low rewards and increased the sampling rate of
high-reward trajectories when calculating the loss. These adjustments mitigated numerical
instability and compensated for the larger gradients typically computed from low-reward
trajectories.

4.1 Sparse Reward-Adaptive Generative Flow Networks

Based on our initial experiments with the vanilla GFlowNets, we addressed the challenge of
improving Generative Flow Networks (GFlowNets) in environments where rewards are sparse.
GFlowNets are a new class of algorithms that train policies to efficiently sample objects according
to a specified reward distribution. However, their performance in sparse reward environments,
such as those encountered in adversarial driving manuvers, often leads to suboptimal generative
policies and incomplete learning of the target distribution. This limitation restricts their
applicability to a wide range of problems where high-reward samples are valuable but sparse.

We identify three key challenges in training GFlowNets within sparse-reward environments:

• Overfitting to Low-Reward Trajectories: The GFlowNet may overfit to low-reward
trajectories, hindering its ability to learn high-reward modes.

• Missing High-Reward Trajectories: High-reward trajectories may be missed during
training due to their rarity.

• High Variance in Loss Estimation: The presence of the logarithm in the objective
function can lead to high variance in loss estimation, especially in sparse reward scenarios
where most trajectories have near-zero rewards.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 17 of 21

Figure 3: Illustration of the challenges caused by sparse rewards in GFlowNet training.

In Figure 3, we show the challenges caused by the sparse rewards Each point denotes a trajectory
sampled during GFlowNet training. The dashed line denotes the optimal fitted line for minimizing
the trajectory balance loss. The dashed circle marks the valid trajectories which have not been
observed in training data.

To address these challenges, we proposed three complementary methods:

• Batch Filtering (BF): This method identifies potentially overfit trajectories using batch-
level statistics and modifies the associated loss to rectify it.

• Sigmoid Temperature Decay (TD): Inspired by techniques in reinforcement learning and
simulated annealing, this method introduces a temperature-based reward augmentation
mechanism. This promotes exploration in the early stages of training and shifts toward
exploitation as training progresses.

• Mixed Priority (MP) Experience Replay Buffer: This method defines the priority of a
trajectory in the replay buffer by weighing the reward with the loss. This prioritizes high-
loss trajectories while preventing excessive sampling of low-reward trajectories.

We conducted extensive empirical evaluations on a diverse suite of sparse-reward environments,
including both discrete and continuous state and action spaces. The environments used are:

• Hypergrid: A discrete grid-like environment where the agent navigates to reach a high-
reward state.

• Gaussian Mixture: A continuous environment with a reward function modeled as a
Gaussian mixture.

• Multi-objective Pusher: A robotic arm environment where the goal is to move an object
to one of two target positions.

The proposed solutions are compared against existing approaches, including Trajectory Balance
(TB), Subtrajectory Balance (SubTB), and Generative Augmented Flow Networks (GAFN).

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 18 of 21

Key Findings:

• The proposed methods consistently learn effective policies and significantly outperform
existing approaches across all tested environments.

• Batch Filtering effectively identifies and rectifies overfit trajectories.
• Sigmoid Temperature Decay encourages early exploration and stabilizes the loss function.
• The Mixed Priority Experience Replay Buffer prioritizes high-loss trajectories and

prevents oversampling of low-reward trajectories.

Figure 4: Performance comparison of our approach with baselines

Figure 4 shows the performance comparison of the proposed methods against several baseline
methods in three simulation environments: Hypergrid, Gaussian Mixture, and Multi-objective
Pusher. The baseline methods compared include:

• Trajectory balance (TB): This is a training objective for GFlowNets that has been shown
to outperform earlier objectives like detailed balance and flow matching.

• Subtrajectory balance (SubTB): This is a more recent training objective that improves upon
TB by enabling learning from partial action sequences of varying lengths.

• Trajectory balance with a prioritized replay buffer (TB-RP): This method enhances the
sample efficiency of TB by prioritizing the replay of high-reward trajectories.

• Generative augmented flow networks (GAFN): This approach incorporates intrinsic
rewards to provide more frequent feedback signals during training.

• Pessimistic backward policy GFlowNets (PBP-GFN): This method addresses an under-
exploitation issue in GFlowNets by making the backward policy more pessimistic.

The x-axis of the figure represents the number of visited trajectories during training, and the y-
axis represents different performance metrics for each environment. The performance metrics used
are empirical L1 error for Hypergrid, approximate KL divergence for Gaussian Mixture, and
success rate for Multi-objective Pusher. The proposed methods, labeled as "Ours", are shown to
outperform the baseline methods in all three environments. The results demonstrate the
effectiveness of the proposed methods in enhancing the sampling performance of GFlowNets in
sparse reward scenarios.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 19 of 21

Implications: Our work has provided valuable insights into the challenges of GFlowNet training
in sparse reward environments and offers effective solutions to improve performance. The
proposed methods have the potential to broaden their applicability to more complex and
challenging tasks, such as robotic control, drug discovery, and adversarial example generation.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 20 of 21

CHAPTER 5
Conclusions

This project contributed to the development of automatic testing tools designed to evaluate the
security and safety of autonomous vehicle stacks against adversarial attacks. The formalization of
safety properties, the creation of a language to parameterize initial conditions, and the exploration
of search algorithms culminated in the establishment of a robust framework for identifying
vulnerabilities and enhancing the safety of AVs. The successful incorporation of full-stack
controllers into the CARLA simulator enabled more realistic and comprehensive testing, leading
to the potential for more robust and secure AV deployments. Furthermore, our research on sparse
reward-adaptive GFlowNets expanded the understanding of search algorithms, revealing potential
applications beyond AV security.

While the project achieved its objectives, several avenues for future research emerged. Expanding
the library of formalized safety properties to encompass a wider array of scenarios and edge cases
remains a valuable direction. This expansion could draw upon resources such as NHTSA
standards, driving regulations, and insights derived from LLMs. Another critical area involves the
continued development of advanced methods for generating challenging adversarial scenarios.
These methods should incorporate variations in environmental conditions, including weather and
lighting, traffic density and complexity, and diverse interactions with various types of road users,
such as pedestrians, cyclists, and other vehicles. Additionally, future research could model attacker
behavior with increased sophistication, considering different levels of expertise, resources, and
motivations. Further refinement of search algorithms, including the exploration of new model
architectures, the incorporation of domain-specific knowledge, and the development of hybrid
approaches, also presents a promising path. Finally, exploring real-world testing in controlled
environments is essential to validate simulation results and comprehensively assess the
performance of AV systems under real-world conditions. This could involve closed-track testing
with human drivers simulating adversarial maneuvers or deploying instrumented vehicles in
controlled environments with carefully designed scenarios.

National Center for Transportation Cybersecurity and Resiliency (TraCR)

Page 21 of 21

REFERENCES

[1] Song, R., Ozmen, M.O., Kim, H., Muller, R., Celik, Z.B. and Bianchi, A., 2023. Discovering
adversarial driving maneuvers against autonomous vehicles. In 32nd USENIX Security
Symposium (USENIX Security 23) (pp. 2957-2974).

[2] Salgado, I.F., Quijano, N., Fremont, D.J. and Cardenas, A.A., 2022, June. Fuzzing malicious
driving behavior to find vulnerabilities in collision avoidance systems. In 2022 IEEE European
Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 368-375). IEEE.

[3] Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L. and Seshia, S.A.,
2019, June. Scenic: a language for scenario specification and scene generation. In Proceedings of
the 40th ACM SIGPLAN conference on programming language design and implementation (pp.
63-78).

[4] Bengio, Y., Lahlou, S., Deleu, T., Hu, E.J., Tiwari, M. and Bengio, E., 2023. Gflownet
foundations. The Journal of Machine Learning Research, 24(1), pp.10006-10060.

	DISCLAIMER
	CONTACTS

	ACKNOWLEDGMENT
	EXECUTIVE SUMMARY
	CHAPTER 1
	Background
	1.1 Background and Motivation
	1.2 Project Objectives and Impacts

	CHAPTER 2
	2.1 Objective
	2.2 Example of Safety Properties

	CHAPTER 3
	3.1 Generating Scenarios for Specific Properties
	3.2 Adversarial Vehicle Parameterization

	CHAPTER 4
	4.1 Overview
	4.1 Sparse Reward-Adaptive Generative Flow Networks

	CHAPTER 5
	Conclusions
	REFERENCES

