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EXECUTIVE SUMMARY 

 
Autonomous Driving (AD) vehicles are designed to navigate and interact with their environment 
through the analysis of real-time sensor data. However, this reliance on sensor input introduces a 
potential vulnerability: adversarial physical attacks. These attacks, where malicious actors 
carefully craft maneuvers can induce AVs to operate unsafely, potentially leading to collisions or 
other dangerous situations. This research sought to expose and mitigate this critical vulnerability 
by developing a suite of automatic testing tools. These tools are designed for the rigorous 
evaluation of the security and resilience of Autonomous Vehicle (AV) stacks when confronted 
with adversarial conditions. 
 
The methodology of this project was structured around three key phases. First, the research 
involved the formalization of safety properties using Linear Temporal Logic (LTL). This process 
established precise definitions of safe AV operation, drawing upon established standards from the 
National Highway Traffic Safety Administration (NHTSA) and relevant driving regulations. To 
facilitate this formalization, Large Language Models (LLMs) were employed to extract and 
summarize safety, security and functional properties (the requirements a vehicle should satisfy to 
operate correctly), ensuring a systematic and comprehensive approach. Second, the project focused 
on the construction of a simulation framework capable of generating a wide array of adversarial 
scenarios. This framework, built upon the Scenic programming language, allowed for the precise 
parameterization of initial conditions, including the behavior of attacking vehicles and various 
environmental factors. A significant component of this phase was the integration of AV control 
software, such as OpenPilot and Autoware, with the CARLA simulator. Third, the research 
involved the development and application of search algorithms, specifically Generative Flow 
Networks (GFlowNets), to efficiently explore the generated scenarios. This exploration aimed to 
identify adversarial maneuvers capable of violating the defined safety properties, enabling the 
systematic discovery of vulnerabilities and the assessment of their potential consequences. 
 
The key findings of this research are multifaceted. The study successfully demonstrated the 
feasibility and potential severity of adversarial driving maneuvers across a range of simulated, yet 
realistic, scenarios. Furthermore, the developed simulation framework, in conjunction with 
GFlowNets, proved to be effective in the systematic discovery of adversarial maneuvers capable 
of compromising AV safety. The research also identified and addressed challenges associated with 
integrating complex AV control software with simulation environments, an essential step towards 
achieving realistic testing conditions. Finally, the project yielded new techniques to improve the 
performance of GFlowNets within sparse reward environments, a common characteristic of 
adversarial scenario generation. 
 
In conclusion, this research provides a valuable framework, along with a set of associated tools 
and methodologies, for the rigorous security testing of AVs. The findings of the project show the 
critical importance of explicitly considering adversarial physical attacks throughout the 
development lifecycle of autonomous vehicles. To further advance this field, future work would 
focus on several key areas. These include expanding the library of formalized safety properties to 
encompass a broader spectrum of driving scenarios and edge cases, developing more sophisticated 
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models of attacker behavior and capabilities to generate more realistic and challenging adversarial 
scenarios, and exploring the application of the developed testing methodologies to real-world AV 
systems within controlled testing environments.  
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CHAPTER 1 
Background 

 
1.1 Background and Motivation  
 
Autonomous Driving (AD) vehicles have to interact and respond in real-time to multiple sensor 
signals indicating how other autonomous robots, targets, and the environment behave near the ego 
vehicle. While autonomous vehicle (AV) developers tend to generate numerous test cases in 
simulations to detect problems, to our best knowledge, they are not testing for malicious physical 
interactions from attackers, such as placing emergency cones in the hood of an AV or driving 
maneuvers that nearby human vehicle drivers or other AV manufacturers can create. For example, 
a hostile driving maneuver causing the victim vehicle to crash (while the malicious driver does not 
crash) can be identified by malicious actors, and then spread and reproduced by multiple people 
worldwide, causing traffic accidents on vehicles with vulnerable AD stacks. 
 
Recently, TraCR members of UCSC and Purdue have introduced two different frameworks ([1], 
[2]) to explore the practicability of adversarial physical conditions in real-world environments. 
They focused on adversarial driving maneuvers, which are a new class of physical attack against 
AD software. Here, the attacker aims to find a (plausible) trajectory near the victim vehicle with 
the goal of causing it to behave in an unintended way, such as crashing or driving off the road.  
 
The frameworks proposed by UCSC and Purdue differ in their assumptions about the attacker and 
the target AV software components. However, both provide an overview of the challenges, a 
means of discovering adversarial driving maneuvers in practice, and potential solutions to defend 
against them. While both frameworks have been shown, to some extent, to be effective in 
discovering adversarial driving maneuvers against a variety of AD software, the research on 
adversarial driving maneuvers is still in its early stages. In this proposal, we will study the 
weaknesses and strengths of both frameworks. Guided by our findings, we will explore creating a 
unified framework leveraging the best ideas from each university and explore rigorous measures 
of adversarial maneuvers for building a safe and secure AD software stack. 
 
1.2 Project Objectives and Impacts 
 
The main goal of our project is to develop automatic testing tools to evaluate the security of 
autonomous vehicle stacks against unanticipated critical conditions created by 
attackers.  Specifically, we aim to (a) Demonstrate adversarial driving maneuvers in different real-
world scenarios, highlighting the potential consequences to the security of AVs. (b) Build an attack 
framework in a simulation environment to study the optimal discovery of adversarial driving 
maneuvers. (c) Contribute to creating a workforce skilled in securing AVs and allow the 
deployment of increasingly trustworthy transportation systems.  
 
We also inform policymakers of the risks posed by adversarial maneuvers by participating in 
public debates and government efforts, and providing technical talks for the target audience.
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In the following we introduce three chapters to achieve these objectives. Table 1 illustrates the 
sequential dependency between Chapters 2, 3, and 4. Specifically, it outlines the objectives of each 
chapter and clarifies how they logically connect to establish the methodology for evaluating 
autonomous vehicle safety against adversarial attacks. 

Table 1: Illustration of chapter objectives and their connection 
 

Chapter Title Objectives  Connections 

2 
Formalizing 
Safety 
Properties 

We defined the requirements for safe operation of 
autonomous vehicles (AVs) by formalizing safety 
properties. The work established a foundation 
using temporal logic and involved collecting data 
from sources like NHTSA standards and driving 
regulations. Large Language Models were used to 
aid in creating property summaries, which were 
then expressed in a formal logic. The formalized 
properties serve as a basis for subsequent tasks 
like vulnerability analysis. 

Chapter 2 lays the 
groundwork by 
formalizing safety 
properties. These 
properties define what 
constitutes a "failure" or 
"unsafe" behavior of the 
autonomous vehicle. This 
provides the foundation for 
the subsequent chapters. 

3 
Parameterizing 
Initial 
Conditions 

We detailed the process of building a language to 
parameterize initial conditions for testing AVs. 
The Scenic framework was used to generate 
adversarial scenarios, and a wrapper was 
developed to connect safety property propositions 
with scenario elements. The chapter also explored 
methods for spawning agents in relevant 
locations and generating initial conditions for 
interactions with other vehicles. Furthermore, the 
integration of control software, including 
VerifAI, Scenic, and OpenPilot, with the CARLA 
simulator, was discussed.    

Chapter 3 directly depends 
on Chapter 2. It uses the 
safety properties defined in 
Chapter 2 to create 
specific, parameterized 
scenarios in a simulation 
environment. The 
scenarios are designed to 
test the AV's behavior 
against the defined safety 
properties. 

4 
Exploring 
Search 
Algorithms 

We explored the use of Generative Flow 
Networks (GFlowNets) as a search method for 
adversarial driving maneuvers. GFlowNets were 
chosen for their ability to generate a diverse set of 
adversarial scenarios, unlike methods that focus 
solely on maximizing rewards. The chapter also 
discusses the challenges encountered in training 
GFlowNet models, specifically addressing sparse 
rewards and numerical instability. To mitigate 
these challenges, the research proposed and 
evaluated several complementary methods.    

Chapter 4 builds upon 
Chapter 3. It employs 
search algorithms to 
explore the scenarios 
generated in Chapter 3 and 
identify adversarial 
maneuvers. The goal is to 
find specific inputs or 
conditions that cause the 
AV to violate the safety 
properties defined in 
Chapter 2. 
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CHAPTER 2 
Formalizing Safety Properties 

 
2.1 Objective 

The goal of this chapter is to formalize properties for Autonomous Vehicles (AVs) that define the 
functional requirements the Automated Driving (AD) stack must adhere to for safe operation. 

A foundation was established by defining formal safety properties using temporal logic in our prior 
research [1, 2]. The process of collecting data from relevant sources to inform the generation of 
diverse safety properties included reviewing NHTSA standards, where the National Highway 
Traffic Safety Administration (NHTSA) safety standards for vehicles were adapted into formal 
properties, and gathering driving regulations used for licensing tests in various states. These 
resources were analyzed to extract essential safe driving behaviors. 

To aid in this process, Large Language Models (LLMs) such as Gemini or ChatGPT were utilized 
to create summaries of properties from the given resources written in natural language. These 
summaries were then used to formally define the properties using propositional variables, logical 
operators, and temporal modal operators. Preliminary results indicated that the summaries and 
properties were sound, although expressing them in temporal logic presented challenges, 
particularly for complex properties. 

The analysis and formal representation of a substantial number of safety properties in temporal 
logic has been completed. These formalized properties serve as a foundation for subsequent tasks 
in the project, such as vulnerability analysis and the development of mitigation strategies. 

2.2 Example of Safety Properties 
 
We provide two examples of formal properties. These examples are expressed in Linear Temporal 
Logic (LTL) and are illustrative, designed to be adapted to specific NHTSA standards or driving 
regulations relevant to your project.  
 
First, we consider the Lane Keeping property:  
 

G (vehicle_in_lane -> F (vehicle_in_lane U (lane_change_initiated -> X G vehicle_in_lane))). 
 
This property states that globally (always), if the vehicle is in its lane, then eventually it will remain 
in its lane until a lane change is initiated.  
 
After a lane change is initiated, then in the next state and globally thereafter, the vehicle should be 
in its lane (the new lane). Here, G stands for Globally (always), F for Finally (eventually), U for 
Until, and X for Next. The propositional variables vehicle_in_lane and lane_change_initiated 
represent that the AV is within its designated lane and that a lane change maneuver has been 
initiated, respectively. This captures the requirement that lane changes should be deliberate and 
controlled, and the vehicle should remain in its lane otherwise.  
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In a second example, we consider the Pedestrian Crossing Safety property:  
 

G (pedestrian_crossing_at_crosswalk -> F (vehicle_stopped_before_crosswalk)). 
 
This property expresses that globally (always), if a pedestrian is crossing at a crosswalk, then 
eventually the vehicle must come to a complete stop before the crosswalk. The propositional 
variables pedestrian_crossing_at_crosswalk and vehicle_stopped_before_crosswalk represent that 
a pedestrian is detected crossing the street at a designated crosswalk and that the AV has come to 
a complete stop before the crosswalk, respectively. This property emphasizes the AV's 
responsibility to yield to pedestrians in crosswalks.  
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CHAPTER 3 

Building a Language to Parameterize Initial Conditions 
 
 
3.1 Generating Scenarios for Specific Properties 
 
We build upon our recent work, Scenic [3], a general-purpose probabilistic programming language 
for describing driving scenarios. We use the Scenic framework to achieve the adversarial 
scenarios. Most challenges are addressed, and initialize scenarios are initialized with different 
numbers of agents in different environments.  
 
We developed a wrapper on Scenic's language to connect safety property propositions with the 
physical objects and agents within a scenario. This allows for targeted scenario generation relevant 
to specific safety properties. 
 
We additionally explored methods to: 
 

• Spawn specific agents (e.g., pedestrians) at appropriate locations based on the safety 
property being tested. For instance, scenarios testing pedestrian safety will involve 
pedestrians in reasonable locations like sidewalks or crosswalks. 

 
• Generate initial conditions where the victim vehicle interacts with other vehicles (e.g., 

following another vehicle for testing adaptive cruise control). 
 

• Placing vehicles with advanced controller software stacks, such as Autoware or Apollo, in 
positions that require several decisions (e.g., close to an intersection or traffic light) 

 
 
3.2 Adversarial Vehicle Parameterization 

We extended Scenic to include parameters that generate adversarial vehicles of different sizes 
(sedan, SUV, truck) and with varied initial positions. This allowed the generation of diverse 
adversarial maneuvers that could potentially lead to safety property violations. We also pursued 
the integration of control software into the CARLA simulator. 

Initially, we integrated VerifAI and Scenic with full-stack controllers. This integration enabled the 
use of VerifAI capabilities to test the decisions of advanced controllers under various conditions 
(e.g., vehicle positions) and their response to attackers. While Scenic can handle simple 
controllers, connecting it with advanced controllers presented challenges. For instance, VerifAI 
and Scenic use discrete-time simulation, whereas autonomous vehicle controllers operate in real-
time. We successfully implemented a synchronized connection manager that interfaces the Scenic 
language, the VerifAI toolkit, the Carla simulator, and a full-stack Autonomous Vehicle driving 
software, Autoware. However, this implementation had some limitations. The simulation took 
longer than expected because we could not yet make Autoware execute faster than real-time. We 
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made efforts to parallelize the simulation execution. We also encountered issues with correctly 
placing the vehicles and explored ways within the CARLA API to resolve this bug. Furthermore, 
we expanded the implementation to simplify integration with other full-stack controllers and 
develop a more general solution. 

Secondly, we aimed to enable OpenPilot, a real-world autonomous driving (AD) software, to 
function within the CARLA simulator. This integration sought to facilitate experiments using 
customized traffic and environmental settings, providing a controlled and flexible testing 
environment for autonomous driving systems. This integration process presented several 
challenges. Firstly, OpenPilot and CARLA do not officially support this integration, necessitating 
custom solutions. Secondly, the system requires a substantial amount of data for training, 
demanding parallel execution capabilities. Additionally, high memory requirements during builds 
and potential software version conflicts posed significant hurdles. 

To address these challenges, we implemented a custom bridge to connect OpenPilot with CARLA, 
enabling automatic communication between the two systems. Furthermore, we dockerized the 
implementation, ensuring its compatibility with any x86 architecture with Docker support. This 
approach significantly simplified deployment across different servers and machines. The result of 
this integration effort is highly beneficial for projects involving OpenPilot testing. It provides a 
foundation for parallel data collection, eliminating the need for time-consuming system setups on 
multiple machines, and allows for more efficient and scalable testing processes. Moreover, the 
dockerized solution enhances the reproducibility and portability of experiments, which is crucial 
for our research. 
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CHAPTER 4 
Exploring Search Algorithms 

 
4.1 Overview 

In this chapter, we detail on exploring the potential of using a method called generative flow 
network (GFlowNet) [4] to search for adversarial driving maneuvers. Unlike reinforcement 
learning (RL) and similar methods that focus on maximizing cumulative rewards (i.e., seeking the 
most severe scenarios), GFlowNet aligned outcomes with a predefined reward distribution. This 
alignment offered the advantage of generating diverse types of adversarial scenarios. 

We developed a program to train GFlowNet and RL models for generating adversarial driving 
maneuvers across three simulation environments: (1) a single-lane toy simulation with two victim 
vehicles controlled by a random parameterized intelligent driver model (IDM); (2) a gym highway 
environment with one victim vehicle controlled by reinforcement learning and five other victim 
vehicles controlled by a default IDM; and (3) the CARLA & OpenPilot simulation with one victim 
vehicle controlled by OpenPilot and the remaining vehicles controlled by CARLA autopilot. 
Figure 1 demonstrates visualization examples of the gym highway environment and the CARLA 
& OpenPilot environment. 

 
Figure 1: Illustration of highway environment in our experiments 

 

 
Figure 2: Illustration of the OpenPilot control software in the CARLA simulator 
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Our initial experiments revealed two challenges in effectively training GFlowNet models. Firstly, 
the scarcity of rewards in our problem made it challenging for the model to find useful samples 
for weight updates. Secondly, GFlowNet training was susceptible to numerical issues due to its 
use of logarithms in loss calculations. For trajectories with very small rewards, the logarithm of 
the reward could lead to excessively large values that distort gradient updates, causing the model 
to prioritize fitting unimportant low-reward observations. 
 
We addressed these challenges. Specifically, we used a pre-trained RL model as the initial policy 
for GFlowNet, which ensured the coverage of high-reward regions. To address the second 
challenge, we filtered out samples with extremely low rewards and increased the sampling rate of 
high-reward trajectories when calculating the loss. These adjustments mitigated numerical 
instability and compensated for the larger gradients typically computed from low-reward 
trajectories. 
 
4.1 Sparse Reward-Adaptive Generative Flow Networks 

Based on our initial experiments with the vanilla GFlowNets, we addressed the challenge of 
improving Generative Flow Networks (GFlowNets) in environments where rewards are sparse. 
GFlowNets are a new class of algorithms that train policies to efficiently sample objects according 
to a specified reward distribution. However, their performance in sparse reward environments, 
such as those encountered in adversarial driving manuvers, often leads to suboptimal generative 
policies and incomplete learning of the target distribution. This limitation restricts their 
applicability to a wide range of problems where high-reward samples are valuable but sparse. 

We identify three key challenges in training GFlowNets within sparse-reward environments: 

• Overfitting to Low-Reward Trajectories: The GFlowNet may overfit to low-reward 
trajectories, hindering its ability to learn high-reward modes. 
 

• Missing High-Reward Trajectories: High-reward trajectories may be missed during 
training due to their rarity. 
 

• High Variance in Loss Estimation: The presence of the logarithm in the objective 
function can lead to high variance in loss estimation, especially in sparse reward scenarios 
where most trajectories have near-zero rewards. 
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Figure 3: Illustration of the challenges caused by sparse rewards in GFlowNet training. 

In Figure 3, we show the challenges caused by the sparse rewards Each point denotes a trajectory 
sampled during GFlowNet training. The dashed line denotes the optimal fitted line for minimizing 
the trajectory balance loss. The dashed circle marks the valid trajectories which have not been 
observed in training data. 

To address these challenges, we proposed three complementary methods: 

• Batch Filtering (BF): This method identifies potentially overfit trajectories using batch-
level statistics and modifies the associated loss to rectify it. 
 

• Sigmoid Temperature Decay (TD): Inspired by techniques in reinforcement learning and 
simulated annealing, this method introduces a temperature-based reward augmentation 
mechanism. This promotes exploration in the early stages of training and shifts toward 
exploitation as training progresses. 
 

• Mixed Priority (MP) Experience Replay Buffer: This method defines the priority of a 
trajectory in the replay buffer by weighing the reward with the loss. This prioritizes high-
loss trajectories while preventing excessive sampling of low-reward trajectories. 

We conducted extensive empirical evaluations on a diverse suite of sparse-reward environments, 
including both discrete and continuous state and action spaces. The environments used are: 

• Hypergrid: A discrete grid-like environment where the agent navigates to reach a high-
reward state. 

• Gaussian Mixture: A continuous environment with a reward function modeled as a 
Gaussian mixture. 

• Multi-objective Pusher: A robotic arm environment where the goal is to move an object 
to one of two target positions. 

The proposed solutions are compared against existing approaches, including Trajectory Balance 
(TB), Subtrajectory Balance (SubTB), and Generative Augmented Flow Networks (GAFN). 
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Key Findings: 

• The proposed methods consistently learn effective policies and significantly outperform 
existing approaches across all tested environments. 

• Batch Filtering effectively identifies and rectifies overfit trajectories. 
• Sigmoid Temperature Decay encourages early exploration and stabilizes the loss function. 
• The Mixed Priority Experience Replay Buffer prioritizes high-loss trajectories and 

prevents oversampling of low-reward trajectories. 

Figure 4: Performance comparison of our approach with baselines 

Figure 4 shows the performance comparison of the proposed methods against several baseline 
methods in three simulation environments: Hypergrid, Gaussian Mixture, and Multi-objective 
Pusher. The baseline methods compared include:    

• Trajectory balance (TB): This is a training objective for GFlowNets that has been shown 
to outperform earlier objectives like detailed balance and flow matching.    
 

• Subtrajectory balance (SubTB): This is a more recent training objective that improves upon 
TB by enabling learning from partial action sequences of varying lengths.  
 

• Trajectory balance with a prioritized replay buffer (TB-RP): This method enhances the 
sample efficiency of TB by prioritizing the replay of high-reward trajectories.    
 

• Generative augmented flow networks (GAFN): This approach incorporates intrinsic 
rewards to provide more frequent feedback signals during training.    
 

• Pessimistic backward policy GFlowNets (PBP-GFN): This method addresses an under-
exploitation issue in GFlowNets by making the backward policy more pessimistic.    

The x-axis of the figure represents the number of visited trajectories during training, and the y-
axis represents different performance metrics for each environment. The performance metrics used 
are empirical L1 error for Hypergrid, approximate KL divergence for Gaussian Mixture, and 
success rate for Multi-objective Pusher. The proposed methods, labeled as "Ours", are shown to 
outperform the baseline methods in all three environments. The results demonstrate the 
effectiveness of the proposed methods in enhancing the sampling performance of GFlowNets in 
sparse reward scenarios. 
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Implications: Our work has provided valuable insights into the challenges of GFlowNet training 
in sparse reward environments and offers effective solutions to improve performance. The 
proposed methods have the potential to broaden their applicability to more complex and 
challenging tasks, such as robotic control, drug discovery, and adversarial example generation. 
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CHAPTER 5 
Conclusions 

This project contributed to the development of automatic testing tools designed to evaluate the 
security and safety of autonomous vehicle stacks against adversarial attacks. The formalization of 
safety properties, the creation of a language to parameterize initial conditions, and the exploration 
of search algorithms culminated in the establishment of a robust framework for identifying 
vulnerabilities and enhancing the safety of AVs. The successful incorporation of full-stack 
controllers into the CARLA simulator enabled more realistic and comprehensive testing, leading 
to the potential for more robust and secure AV deployments. Furthermore, our research on sparse 
reward-adaptive GFlowNets expanded the understanding of search algorithms, revealing potential 
applications beyond AV security. 

While the project achieved its objectives, several avenues for future research emerged. Expanding 
the library of formalized safety properties to encompass a wider array of scenarios and edge cases 
remains a valuable direction. This expansion could draw upon resources such as NHTSA 
standards, driving regulations, and insights derived from LLMs. Another critical area involves the 
continued development of advanced methods for generating challenging adversarial scenarios. 
These methods should incorporate variations in environmental conditions, including weather and 
lighting, traffic density and complexity, and diverse interactions with various types of road users, 
such as pedestrians, cyclists, and other vehicles. Additionally, future research could model attacker 
behavior with increased sophistication, considering different levels of expertise, resources, and 
motivations. Further refinement of search algorithms, including the exploration of new model 
architectures, the incorporation of domain-specific knowledge, and the development of hybrid 
approaches, also presents a promising path. Finally, exploring real-world testing in controlled 
environments is essential to validate simulation results and comprehensively assess the 
performance of AV systems under real-world conditions. This could involve closed-track testing 
with human drivers simulating adversarial maneuvers or deploying instrumented vehicles in 
controlled environments with carefully designed scenarios. 
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