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EXECUTIVE SUMMARY 

 
Autonomous driving systems rely heavily on advanced perception models to interpret their 
surroundings and make real-time decisions. Among these, Bird’s Eye View (BEV) perception has 
become a crucial component, offering a top-down 3D representation generated from multi-camera 
and sensor inputs. This unified spatial understanding enables effective object detection, tracking, 
and path planning. Despite BEV's growing prominence, its security vulnerabilities remain 
underexplored, particularly in the context of adversarial machine learning. Existing research has 
largely focused on adversarial attacks targeting image classification or segmentation models, 
neglecting the more complex and safety-critical BEV-based systems. In this study, we present a 
comprehensive security analysis of BEV perception models, examining both vision-only and 
multi-sensor fusion architectures. 
 
We evaluate the adversarial robustness of state-of-the-art BEV models, including BEVDet, 
BEVDet4D, Depth-Aware Learning (DAL), and BEVFormer. Unlike traditional attacks that aim 
to misclassify objects, we design real-world attack scenarios intended to disrupt driving behavior. 
Our findings reveal that BEV-based systems are highly susceptible to adversarial perturbations, 
with attacks often transferring across architectures and sensor configurations. Even multi-sensor 
fusion models show limited resilience, suggesting current fusion strategies are insufficient to 
counteract adversarial threats. This work highlights critical gaps in the adversarial robustness of 
BEV perception and emphasizes the urgent need for defense mechanisms tailored to these models. 
By exposing these vulnerabilities, we aim to catalyze research into more robust and secure 
perception systems, which are essential for the safe and reliable deployment of autonomous 
vehicles. 
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CHAPTER 1 
Introduction 

 
Autonomous driving technology has rapidly advanced in recent years, leveraging sophisticated 
perception models to interpret and navigate real-world environments. These systems rely on a 
variety of sensors, including cameras, LiDAR, and radar, to construct a comprehensive 
understanding of their surroundings. Among these, Bird-Eye-View (BEV) perception has emerged 
as a powerful approach, enabling self-driving vehicles to generate a unified spatial representation 
from multiple sensor inputs. Despite its growing adoption in industry-leading platforms such as 
Tesla Autopilot, BEV-based perception remains an underexplored area in adversarial machine 
learning research. 
 
This report investigates the security vulnerabilities of advanced autonomous driving perception 
systems, focusing on the susceptibility of BEV-based detection models to adversarial attacks, 
and its negative influence on the planning module for Autonomous driving. Unlike traditional 
computer vision attacks that mislead object classification, adversarial threats against autonomous 
vehicles pose tangible safety risks, such as forcing vehicles into hazardous decisions or disrupting 
traffic flow. Specifically, we examine how adversarial perturbations in both vision-only and 
sensor-fusion models can degrade system performance, potentially leading to critical failures in 
real-world scenarios. 
 
This report is structured as follows: 
● Chapter 2 provides a comprehensive review of related adversarial research in autonomous 

perception. 
● Chapter 3 outlines the experimental setup and co-simulation methodology. 
● Chapter 4 and Chapter 5 present adversarial attack strategies against vision-only and vision-

LiDAR fusion models, respectively. 
● Chapter 6 extends the analysis to black-box attack transferability. 
● Chapter 7 explores the effects of perception attacks on the planning module, leading to 

potentially dangerous driving decisions. 
● Chapter 8 concludes with key findings and recommendations for enhancing the robustness of 

autonomous perception systems against adversarial threats. 
 
Through this study, our findings underscore the need for resilient defense mechanisms to safeguard 
self-driving technology against emerging cyber-physical threats. 
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CHAPTER 2 
Related Work 

 
2.1 Bird-Eye-View Object Detection 
 
Bird-Eye-View (BEV) detection has become a critical component of autonomous vehicle 
perception, transforming multi-camera and sensor inputs into a unified top-down spatial 
representation. BEVDet[1] pioneered vision-only BEV detection by using a two-stage encoding 
process to extract and transform multi-view image features into BEV space. BEVDet4D[2] and 
SOLOFusion[16] extend these by incorporating temporal cues, improving motion prediction and 
tracking, while BEVDepth extends these via depth information for enhanced object localization. 
Inspired by 3D object detection models[7,8,9,10,11,12] utilizing LiDAR for better object 
recognition, BEV models with LiDAR signals[3,13,14] enhance BEV perception further through 
multi-modal sensor fusion, integrating LiDAR signals for improved depth estimation and object 
localization. BEVFormer[4], a transformer-based model, introduces a historical BEV memory, 
leveraging attention mechanisms for long-term tracking and improved scene understanding. 
 
While BEV detection enhances 3D perception, it also introduces security concerns. Vision-only 
models like BEVDet and BEVDet4D are vulnerable to adversarial perturbations that can 
manipulate object detection. Sensor-fusion models such as DAL[3] and BEVFormer add potential 
attack surfaces, including LiDAR spoofing and feature manipulation. These threats pose 
significant risks to autonomous driving safety. This report systematically analyzes adversarial 
vulnerabilities in BEV-based perception, evaluating attack strategies on BEVDet, BEVDet4D, 
DAL, and BEVFormer in simulated environments, with a focus on real-world security implications 
and defensive strategies. 
 
2.2 Adversarial Attack for Vision and LiDAR 
 
Adversarial attacks[5,6,17,18,19,20,21,22,23] pose significant challenges to the security of 
machine learning systems, particularly in the context of autonomous driving. Brown et al. [5] 
introduced the concept of the adversarial patch, a universal, robust, and targeted perturbation that, 
when added to any scene, can mislead image classifiers into predicting a specific target class. 
These patches are physically realizable and effective under various transformations, highlighting 
vulnerabilities in visual perception systems. Specifically in the field of autonomous driving, 
studies have explored the possibilities of attacking the perception module for autonomous driving 
via camera[24] or LiDAR signals[25,26]. Building upon these findings, MSF-ADV [6] examined 
the security of multi-sensor fusion (MSF) perception systems in autonomous vehicles. They 
developed a physically realizable adversarial 3D-printed object designed to be invisible to both 
camera and LiDAR sensors simultaneously. This attack challenges the assumption that MSF 
systems are inherently robust against single-sensor attacks by demonstrating that coordinated 
attacks can compromise all fusion sources, leading to critical perception failures.  
 
These studies underscore the pressing need to develop robust defense mechanisms to safeguard 
autonomous systems against such adversarial threats. 
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CHAPTER 3 

Co-simulation Development 
 
3.1 Simulation Data Collection 
 
To highlight how an attack on the perception module would actually affect the decision and driving 
behavior of an autonomous driving agent, we need to run the agent in a simulation world. To this 
end, we opt for CARLA, an open-source simulator for autonomous driving research, which has 
been developed from the ground up to support the development, training, and validation of 
autonomous driving systems. The simulation platform supports flexible specification of sensor 
suites and environmental conditions.  
 
We set up CARLA to generate and collect simulation data in a nuScenes-like style, which is 
suitable for BEV detection models. Specifically, we load seven different routes and weather 
combinations, spawn over a hundred vehicles and pedestrians, and set them in autopilot mode to 
run the simulation. After that, we deploy six camera sensors, one LiDAR sensor, and six RADAR 
sensors to one specific vehicle and save the sensor capture to disk at a fixed frequency. 
The sensor suite setup is shown in Fig. 1. 
 

 
 

Figure 1: Sensor suite setup in CARLA simulator. 
 

3.2 BEV Detection on Simulation Data 
 
Perceiving 3D environments is essential for autonomous driving as it is crucial for subsequent 
onboard modules from prediction to planning. Thus, we focus on attacking the perception module 
and plan to extend to studying the subsequent driving behavior of an autonomous driving agent 
under attack afterward. The BEV-based detection framework is drawing extensive attention to 
offer a holistic feature representation space from multi-camera images, and owns the following 
inherent merits including (1) joint feature learning from multi-view images, (2) unified detection 
space without post fusion, (3) amenability for temporal fusion, and (4) convenient output 
representation for the downstream prediction and planning.  
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We opt for BEVDet as the vision-only baseline model by default due to its simplicity and 
efficiency, as well as its well-structured codebase. As shown in the following figure, it adopts a 
double-encoder structure for image-view and bird-eye-view representation learning and a 2D-3D 
view transformer to connect representations from these two different views. 
 

 
Figure 2: The structure overview of BEVDet.  
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CHAPTER 4 

Adversarial Attack on Vision-only Model 
 
4.1 Attacking BEVDet with Single-Frame Input 
 
4.1.1 PatchAttack on BEVDet 
 
As the first step of developing an adversarial attack framework, we conduct a comprehensive 
adversarial vulnerability analysis of vision-based BEV detection models in the digital world. 
Specifically, we adapt a range of existing white-box attacks, including PGD-Attack, FGSM-
Attack, C&W-Attack, and AutoPGD, to the BEV setting. Let I ∈ RC×H×W be an input image, 
comprising N targets given by T = {t1, t2, t3, ..., tN}. By feeding the image I into 3D object detectors, 
we can have n perception results, capturing class, 3D bounding boxes, and other attributes, 
represented as f (I) = {y1, y2, y3, ..., yn}. Here, each yi symbolizes a discrete detection attribute 
such as localization, class, velocity, etc. We then compare these predictions with the ground truth 
bounding boxes T, establishing a match when the 2D center distances on the ground plane are 
under a predefined threshold. We hereby consider both pixel-based attacks, where bounded 
perturbations are added to the whole image, and patch-based attacks, where unbounded 
perturbations are added into a pre-defined region of the image. Note for patch-based attack, 
considering a target within a 3D bounding box, it can be characterized by its eight vertices and a 
central point, collectively denoted as {co, c1, ..., c8} with ci ∈ R3. Leveraging the camera 
parameters, we project these 3D points to 2D points on the image plane, yielding the transformed 
set {c'o, c'1, ..., c'8}. We define the size of the adversarial patch to be proportional to the size of the 
rectangle formed by these 2D points, and strategically position the adversarial patch to be centered 
at the point c'o.  
 
Regarding the attack configuration, we consider untargeted attacks for each target and maximize 
the following objective: 

𝐿𝐿𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = −
1
𝑁𝑁
�
𝑁𝑁

𝑖𝑖=1

�
𝐶𝐶

𝑗𝑗=1

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐
𝑗𝑗 (𝐼𝐼 + 𝑟𝑟, 𝑡𝑡𝑖𝑖) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑖𝑖𝑗𝑗  

where 𝐶𝐶 denotes the number of classes, and 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐
𝑗𝑗  denotes the confidence score on 𝑗𝑗 − 𝑡𝑡ℎ class. The 

adversarial perturbation r is optimized iteratively using PGD-Adv, as 𝑟𝑟𝑖𝑖+1 = 𝑃𝑃𝑟𝑟𝑙𝑙𝑗𝑗𝜖𝜖 �𝑟𝑟𝑖𝑖 +

𝛼𝛼𝛼𝛼𝑙𝑙𝛼𝛼�𝛻𝛻𝐼𝐼+𝑢𝑢𝑖𝑖 , 𝐿𝐿��. To facilitate an equitable comparison, the confidence scores undergo 
normalization within the range [0,1] by using the sigmoid function, which mitigates sensitivity 
to unbounded logit ranges.  
 
To attack the localization and other attributes, we adopt the straightforward 𝐿𝐿1loss as the objective 
function, 
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𝐿𝐿𝑐𝑐𝑙𝑙𝑐𝑐𝑢𝑢𝑐𝑐𝑖𝑖𝑙𝑙𝑢𝑢𝑢𝑢𝑖𝑖𝑙𝑙𝑢𝑢 =
1
𝑁𝑁
�
𝑁𝑁

𝑖𝑖=1

�|𝑓𝑓𝑐𝑐𝑙𝑙𝑐𝑐(𝐼𝐼 + 𝑟𝑟, 𝑡𝑡𝑖𝑖) − 𝑙𝑙𝑙𝑙𝑐𝑐𝑖𝑖|�1 + �|𝑓𝑓𝑙𝑙𝑢𝑢𝑖𝑖𝑢𝑢(𝐼𝐼 + 𝑟𝑟, 𝑡𝑡𝑖𝑖) − 𝑙𝑙𝑟𝑟𝑜𝑜𝑒𝑒𝑖𝑖|�1

+ �|𝑓𝑓𝑣𝑣𝑢𝑢𝑐𝑐(𝐼𝐼 + 𝑟𝑟, 𝑡𝑡𝑖𝑖) − 𝑣𝑣𝑒𝑒𝑙𝑙𝑖𝑖|�1. 
 
Using these objective functions together could complete our setup to adversarially attack the BEV-
based object detectors. 
 
4.1.2 Evaluation Results 
 
We evaluate BEVDet-R50 on our collected CARLA simulation data and show the results in Table 1. 
 
Table 1: mAP of BEVDet-R50 w/o and w/ PatchAttack. 
 

 Car Pedestrian 
w/o Attack 0.22 0.14 
w/ Attack 0.00 0.00 

 
Additionally, we visualize the predicted bounding box before and after attack in Fig. 3, Fig. 4. 
 
We can observe that most vehicles and pedestrians are successfully detected by our perception 
module, except the ones that are very far away without PatchAttack in Fig. 3, meanwhile in Fig. 4 
we can observe that most vehicles and pedestrians now cannot be detected by the model, indicating 
the effectiveness of applying a small adversarially crafted patch on target object. 
 

 

 
 

Figure 3: Detection Results w/o PatchAttack. 
 

 
Figure 4: Detection Results w/ PatchAttack. 
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4.2 Attacking BEVDet with Temporal Input 
 
Temporal cues are proven to be beneficial for accurate localization and velocity estimation in BEV 
detectors. However, it also gives a malicious adversary more channels to attack as information 
from multiple timestamps is gathered and processed together. To extend beyond simple single-
frame images input in Chapter 4.1, and additionally consider temporal information in adversarial 
attacks, we experiment with the temporally extended version of BEVDet, BEVDet4D. It retains 
the intermediate BEV feature of the previous frame and concatenates it with the ones generated by 
the current frame before using the features for predictions. 
 
4.2.1 PatchAttack on BEVDet4D 
 
Given the nature of BEVDet4D, we consider three scenarios: (a) Benign case: The model processes 
clean input across multiple frames. (b) Single adversarial attack: The model processes multiple 
frames with only the last frame being adversarially impacted. (c) Temporal-Continuous 
adversarial attack: The adversarial input exists persistently across multiple timestamps. This 
results in all sequential inputs used for temporal information modeling being adversarial examples, 
causing an accumulation of errors within the model through retained temporal data. Note that in 
the last scenario, we assume a single fixed attack patch attached to an object (e.g., a car or a person) 
results in multi-frame varying attack patches captured by the sensors (e.g., camera), which is closer 
to the real-world setup.   
 
Benign case is used to evaluate the baseline performance when there is no adversary attack.  
 
Single adversarial attack is performed by simply applying the attack we developed in Chapter 
4.1 onto the last frame in each frame sequence. This approach shows some effectiveness but not 
as much compared to its performance when the model only takes in a single frame in Chapter 4.1. 
 
Temporal-continuous adversarial attack performs the attack on all the frames in the frame 
sequence instead of only the last one. To make the generated adversarial samples consistent with 
the movement of objects, the adversarial samples are generated in the 3D space and then translated 
into 2D space instead of directly generating the samples in the 2D space. As shown in Table 1, We 
can observe that the results are significantly improved as the attack achieved a 100% success rate. 
 
Table 2: mAP of BEVDet4D-R50 w/ single adversarial attack and temporal-continuous adversarial 
attack. 
 

Model Attack mAP 
Car Pedestrian 

BEVDet Single 0.15 0.08 
Temporal-Continuous 0.00 0.00 
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CHAPTER 5 

Adversarial Attack on Vision-LiDAR Model 
 
Compared with camera-captured images, 3D LiDAR data is another important data modality that 
is commonly used in the autonomous driving industry. Compared to cameras, LiDAR measures 
provide more accurate 3D geometric cues, such as depth and shapes, but are inherently more sparse 
and less semantic-oriented.  Therefore, the complementary nature of different data modalities has 
motivated the design of multi-modal sensor-fusion detection models. In principle, the Multi-Sensor 
Fusion (MSF) model design can be more robust against malicious attacks under the assumption 
that not all sources are attacked at the same time. 
 
5.1 BEV Models with Vision and LiDAR Input 
 
Compared with camera-captured images, 3D LiDAR data is another important data modality that 
is commonly used in the autonomous driving industry. Compared to cameras, LiDAR measures 
provide more accurate 3D geometric cues, such as depth and shapes, but are inherently more sparse 
and less semantic-oriented.  Therefore, the complementary nature of different data modalities has 
motivated the design of multi-modal sensor-fusion detection models. In principle, the Multi-Sensor 
Fusion (MSF) model design can be more robust against malicious attacks under the assumption 
that not all sources are attacked at the same time. 
 
To study how additional LiDAR modality affects the detection performance when encountering 
attacks, we use the Detecting-As-Labeling (DAL) model,  an extended version of BEVDet with 
the ability to deal with both LiDAR and temporal information, in our experiments. In each frame, 
an object is placed on top of a vehicle to interfere with the LiDAR measurements, altering the 
captured point cloud data to further interfere with the DAL’s detection results. 
 
5.1.1 Attacking DAL via Adversarial Vision and LiDAR Signal 
 
To generate the adversarial LiDAR signal, we use MSF-ADV to alter the shape of an attack object 
represented by a 3D polygon mesh for each vehicle and pedestrian in the scene to generate an 
adversarial polygon mesh. That object is to be attached to the surface of a vehicle or pedestrian to 
alter the LiDAR signal. Similar to the patch-based attack, we propagate the gradient from the 
optimization objective to a benign 3D object. The gradient is then used to alter the shape of the 
said benign 3D object to make it adversarial. The pipeline overview is illustrated in Fig. 5. 
 

 
Figure 5: The pipeline overview of MSF-ADV.  
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The objective of optimization is composed of three loss functions. The first one is simply the 
confidence score of the vehicle or pedestrian to be undetected. 

 
where y is the model’s predicted confidence score for the object to be made invisible. 
 
The second one is a laplacian smoothing loss defined as 
 

 
where M is the total number of vertices in the polygon mesh, vi is the 3D coordinates of a vertex 
in the polygon mesh, vj is the 3D coordinates of a neighboring vertex adjacent to vi, N(i) is the 
total number of vertices adjacent to the vi. The purpose of this loss is to smooth out the surface 
of the adversarial object, therefore increasing the realizability to 3D print the object. 
 
The last one is the stealthiness loss to constrain the difference between the adversarial polygon 
mesh and the original polygon mesh so that it may look stealthier and natural. This loss is defined 
as the mean maximum absolute difference (l∞) between the vertices in the adversarial polygon 
mesh and the ones in the original mesh. 

 
where v’

i is the 3D coordinates of a vertex in the original polygon mesh corresponding to vi. 
A visualized example of the generated adversarial object to attack LiDAR is illustrated in Fig. 6. 
 

 
Figure 6: One example of the adversarial polygon mesh. 

 
5.1.2 Evaluation of Adversarial Attack via Both Visual Sequence and LiDAR 
 
Since BEVDet doesn’t take LiDAR signals as inputs, we use DAL to evaluate the performance of 
the LiDAR attack. In each frame, an object is placed on top of a vehicle to interfere with the 
LiDAR measurements, altering the captured point cloud data to further interfere with the DAL’s 
detection results. The patch-based attack designed for attacks along visual temporal sequences 
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from Chapter 4.2 is also applied simultaneously, thus making sure the model receives adversarial 
signals via both modalities (i.e., vision and LiDAR). Fig. 7 is a visual illustration of our attack: a 
patch is attached to the back of the vehicle to interfere with the camera, and an adversarial object 
is placed on the top of the vehicle to disturb the LiDAR sensor. 
 

 
Figure 7: The front camera view w/ vision-lidar adversarial attack. 

 
Although only applying the attack on the visual temporal sequences alone can greatly lower the 
detection accuracy of a vision-only model such as BEVDet4D, it is shown in Tab. 3 that the 
additional adversarial attack on the LiDAR signals still improves the attack performance. 
 
Table 3: mAP of DAL w/ adversarial attack via Visual Sequence and LiDAR. 
 

Model Attacked Modality mAP 
Car Pedestrian 

BEVDet Visual Sequence 0.20 0.13 
Visual Sequence + LiDAR 0.00 0.00 
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CHAPTER 6 

Transitioning to Black-Box System Simulations 
 
6.1 Experimental Setup 
 
So far, we have only been working on BEVDet and its derivative models. However, an intriguing 
property of adversarial examples that makes them threaten in the real world is their transferability. 
Transferable attacks assume a realistic scenario where the adversarial examples generated on a 
(local) surrogate model can be directly transferred to the (unknown) target model. Such attacks 
require no interaction with the target model, nor any prior knowledge of the target model, and thus 
are more dangerous to safety-critical applications like autonomous driving.  
 
Therefore, to study the security implications of transferable attacks, we choose BEVFormer as the 
target model and evaluate its performance on the adversarially impacted images generated based 
on BEVDet4D. BEVFormer is another popular BEV-based 3D detection model, with two major 
differences when compared with BEVDet and its various variant models (e.g., BEVDet4D and 
DAL). First, the former is a Transformer-based model, while the latter ones are CNN-based 
models. Second, the temporal version of the former maintains and updates a historic BEV feature 
memory, while the temporal version of the latter simply uses the BEV feature from a previous 
timestamp. If the attack transfer success rate remains high even with these distinct differences, it 
means an even more severe security threat in the current perception modules. 
 
6.2 Experimental Results 
 
The experimental results in Tab. 4 demonstrate that attacking BEVFormer with the adversarial 
example generated based on BEVDet leads to a surprisingly high success rate. 
 
Table 4: mAP of BEVFormer w/ and w/o adversarial attack. 
 

Model Attack mAP 
Car Pedestrian 

BEVFormer w/o Attack 0.24 0.13 
w/ Attack 0.07 0.03 

 
We additionally provide the visualization comparison below. In Fig. 8, it is shown that the 
BEVFormer has no trouble detecting the vehicle forward w/o attack. However, in Fig. 9, observe 
that most vehicles and pedestrians now cannot be detected by the model, indicating the 
effectiveness of our attack method. 
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Figure 8: BEVFormer detection results w/o attack. 

 

 
Figure 9: BEVFormer detection results w/ attack. 
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CHAPTER 7 

Attacking the Planning Module 
 
To investigate how adversarial attacks on perception models affect autonomous driving decisions, 
we aim to build an agent in CARLA with a perception module (e.g., BEVDet) and a planning 
module for driving actions like acceleration and braking. This involves integrating components 
like adversarial input generation and multi-camera 3D detection models into CARLA’s codebase, 
enabling them to work together to produce real-time control signals for a CARLA agent (e.g., a 
car). 
 
7.1 Planning Module Implementation 
 
We first describe how we implement the planning module. Specifically, to highlight the effect of 
wrong detection results under attack and minimize the effect of other modules, we design a simple 
and straightforward planning module: Accelerate to 16 m/s when there is no obstacle detected 
within 20 meters ahead and decelerate to match the speed of the obstacle ahead if otherwise. 
Additionally, we create a simple scene in which two cars are created on a single, straightforward 
lane. One car is the main vehicle controlled by the autonomous agent, while another car is running 
at 8 m/s ahead. A 3D detection model will act as the perception module to detect any obstacles 
ahead for decision-making. If the perception module is successfully attacked and fails to recognize 
the parked car ahead, the car behind will crash into the car ahead, indicating severe safety 
repercussions. 
 
7.2 Attacking Framework 
 
In our implementation, to attach the adversarial patch to the back of the vehicle, the back facet of 
the front vehicle’s bounding box is used to determine the 4 corners of the adversarial patch. The 
facet is resized to half of the original size, and its 4 corners’ coordinates are translated to the 
coordinates in the camera view. The adversarial patch is then warped to fit the quadrilateral defined 
with these 4 corners in the camera view. The adversarial 3D object is rendered outside Carla with 
open3d. Box blur is then applied to the output image from open3d to suppress the noise in the 
background before the blank area is removed via cropping. The resulting image is then patched 
onto the top of the front vehicle in the camera view from Carla with a similar procedure for 
attaching the adversarial patch to the front vehicle. The lidar signal of the adversarial 3D object is 
also generated outside Carla and then merged with lidar signals from Carla before being fed to the 
detector. 
 
7.3 Results Visualization 
 
A simple visualization of the third-person view of an autonomous vehicle in CARLA is shown 
below. In Fig. 10, no attack is employed, and the front vehicle is being detected by the rear one. 
In Fig. 11, the attack is employed on the front vehicle, making it invisible to the rear one. In Fig. 
12, as no obstacle is detected, the rear vehicle accelerates and collides with the front one. 
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Figure 10: This is a No Attack Scenario, where the car can be successfully detected. 

 

  
Figure 11: This is an Attack Scenario, where the car appears “invisible”. 

 

 
Figure 12: This is a successful Collision Scenario, which leads to a traffic accident. 
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CHAPTER 8 
Discussion 

 
Defense Mechanisms and Mitigation Strategies 
 
Defending against multi-modal adversarial attacks is particularly challenging due to the 
complexity of cross-modal fusion and the high dimensionality of sensor inputs. Nonetheless, 
several directions can be explored. One such approach is adversarial training, which involves 
incorporating adversarial examples, especially those involving joint perturbations across 
modalities, into the training pipeline to improve model robustness. However, this method must 
generalize across diverse attack types and scale appropriately with increasing sensor complexity. 
Another strategy involves sensor cross-validation, where architectures are designed to perform 
internal consistency checks across modalities. For example, verifying LiDAR point cloud 
projections against vision-based outputs can help detect anomalies, with discrepancies serving as 
potential indicators of tampering or unreliable perception. Ensemble methods and redundancy-
based defenses can also offer resilience by using multiple independently trained models or late 
fusion techniques. These systems can leverage consensus mechanisms, so that even if an attack 
succeeds against one model, others may still yield accurate results. 
 
Certified robustness and formal verification can guarantee bounded robustness properties for high-
dimensional and multi-modal models. In addition, input preprocessing and filtering may provide 
practical, lightweight defenses. For LiDAR data, this could include statistical filtering of 
anomalous point clouds, while for vision data, transformations like JPEG compression, Gaussian 
smoothing, or patch masking have shown some success in mitigating adversarial noise. No single 
defense is likely to be sufficient. Instead, a layered security approach—one that integrates 
detection mechanisms, redundancy, and robust training—is necessary to protect future AV 
perception systems. 
 
Deployment Challenges in Real-World AV Systems 
 
While the adversarial vulnerability analysis presented in our study is rigorous and highlights 
critical risks, translating these insights into real-world autonomous vehicle (AV) deployments 
presents numerous challenges. One major issue is computational overhead. Generating and 
defending against adversarial examples in real-time, especially in safety-critical environments, 
imposes substantial computational costs. As current AV stacks are already resource-intensive, any 
additional security layer must be highly efficient and optimized for deployment. 
 
Another challenge stems from the fact that many commercial AV systems operate as black boxes, 
using proprietary models or closed software stacks. This makes it difficult to design or test robust 
defenses without full access to system internals, limiting the practical deployment of white-box-
informed techniques. Additionally, domain adaptation and generalization remain significant 
hurdles. While our evaluations are grounded in datasets such as nuScenes, real-world 
environments are far more diverse in terms of geography, weather, lighting, and road conditions. 
Consequently, adversarial vulnerabilities may vary significantly, and defenses trained in one 
domain may not generalize well without further adaptation. 
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CHAPTER 9 
Conclusions 

 
In this paper, we conducted a systematic evaluation of adversarial vulnerabilities in Bird’s Eye 
View (BEV) perception models used for autonomous driving. Our analysis focused on multiple 
BEV-based detection frameworks, including BEVDet, BEVDet4D, DAL, and BEVFormer, 
assessing their robustness against adversarial attacks on both vision-only and multi-sensor fusion 
systems. We evaluated these models across various adversarial scenarios, including patch-based 
attacks, temporal adversarial strategies, and LiDAR spoofing, with a particular focus on their 
impact on real-world driving safety. 
 
Our findings indicate that vision-only models like BEVDet and BEVDet4D are highly susceptible 
to adversarial perturbations, leading to significant perception failures. While multi-modal sensor 
fusion models like DAL and BEVFormer improve perception accuracy, they remain vulnerable to 
coordinated vision-LiDAR attacks, highlighting the limitations of current multi-sensor security 
strategies. Furthermore, adversarial transferability across models underscores the broader risk to 
BEV-based perception systems, even when adversaries lack direct access to the target architecture. 
 
These results emphasize the urgent need for robust adversarial defenses tailored for BEV-based 
perception, incorporating adaptive security mechanisms to mitigate real-world attack risks. Future 
work should extend adversarial evaluations to more complex driving environments and real-world 
scenarios to further strengthen the security of autonomous perception systems. 
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