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EXECUTIVE SUMMARY 

 
The sharing of large-scale transportation data is beneficial for improving transparency, traffic 
management, urban planning and policymaking. However, it also raises significant security and 
privacy concerns, as human mobility data is highly sensitive and may include identifiable personal 
information, such as individuals' home locations, medical visits, and place of worship, which may 
be abused by malicious parties. 
 
To address these concerns, synthetic data generation based on real transportation data offers a 
promising solution that provides potentially high utility for downstream tasks while effectively 
mitigating privacy concerns. Although there are various synthetic data generation techniques, 
especially the deep learning-based models, such as Generative Adversarial Networks (GANs), 
Variational Autoencoders (VAEs), and diffusion models, they are often not tailored to the unique 
characteristics of transportation data, such as the inherent structure of transportation networks 
formed by all trips in the datasets. 
  
In this project, we use New York City taxi data as a case study to conduct a systematic evaluation 
of the performance of widely used tabular data generative models. The New York City taxi data is 
one of the largest publicly available datasets in the domain. Its extensive size and accessibility 
make it a valuable resource for studies in this field. It is represented in tabular data format, with 
each row containing detailed information about an individual taxi trip. 
 
We use a comprehensive set of metrics to evaluate the performance of various tabular data 
generative models, including Gaussian Copula, CTGAN, TVAE, CTABGAN, and two diffusion-
based models: TabDDPM and STaSy. Our evaluation framework includes metrics such as 
downstream task performance (e.g., training predictive models on synthetic data to estimate taxi 
fares), Wasserstein distance, coverage, privacy preservation, and model complexity. Additionally, 
we introduce a novel graph-based metric and an enhanced privacy preservation metric to provide 
a more thorough assessment. 
 
The novel graph-based metric is a metric tailored particularly for transportation data, as 
transportation data form a transportation graph, with origins and destinations as nodes, and each 
trip as an edge between two nodes. This metric evaluates the similarity between real and synthetic 
transportation networks, measured by the total variation distance, as each graph corresponds to a 
probability distribution. This metric provides potentially deeper insights into their structural and 
functional alignments. 
 
The improved privacy measurement metric is presented based on the insight that the distance 
between synthetic data and training data is likely to be smaller than the distance between synthetic 
data and testing data if there is overfitting in the trained generative models. This addresses the 
shortcoming of the commonly used privacy measurement metric, Distance to Closest Record, 
which does not differentiate between these two sets of distances. 
 
Our experimental results reveal that the existing tabular data generative models often fail to 
perform as consistently as claimed in the literature, specifically when applied to transportation 
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data. The results indicate that TabDDPM achieves the best overall performance across multiple 
metrics. However, it appears TabDDPM may struggle to handle categorical variables with 
hundreds of classes. Furthermore, our novel graph-based utility measurement metric reveals a 
significant gap between synthetic and real data. This work underscores the potential need to 
develop generative models specifically tailored to take advantage of the unique characteristics of 
transportation applications.  
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CHAPTER 1 
Introduction 

 
Open large-scale transportation data offer significant benefits, including enhancing transparency, 
improving traffic management and urban planning, and providing valuable opportunities for 
researchers to conduct in-depth studies that inform and support effective policymaking. However, 
the availability of largescale data raises significant privacy concerns, as human mobility is highly 
sensitive. Transportation data may contain identifiable personal information such as individuals’ 
home locations, and data sharing can infringe on individual privacy. For example, celebrities may 
be stalked with shared taxi journey data [2]. 
 
To address these challenges, synthetic data generation techniques have emerged as a promising 
solution for data sharing, offering potentially high utility for downstream tasks while effectively 
mitigating the privacy concerns. These techniques essentially approximate the raw data 
distribution with machine learning models and then generate artificial data instead of sharing the 
raw data directly. 
 
In recent years, deep learning-based synthetic data generation models have drawn considerable 
attention due to their ability to learn complex data distributions and generate realistic synthetic 
data. Among deep generative models, Generative Adversarial Networks (GANs) [8], Variational 
Autoencoders (VAEs) [13], and diffusion models [10] have demonstrated remarkable capabilities 
in generating high-quality samples, particularly in domains such as images and text. 
 
Deep generative models have also been adapted for various data applications, including tabular 
data with structured rows and columns [27]. This prevalent form of data representation is widely 
used in diverse domains, including finance, healthcare, and e-Commerce, among others [4]. 
Tabular data is also a common format for sharing transportation data. For instance, taxi trips can 
be represented in a tabular format, where each row corresponds to an individual trip, and the 
columns capture various properties of the trip, such as the start location, end location, and trip 
duration. 
 
Researchers have proposed a variety of models to generate synthetic tabular data, such as GAN 
and Variational autoencoder-based, diffusion-based generative modeling [14,27]. To synthesize 
transportation data, leveraging existing tabular data generative models provides an efficient 
starting point for further research. However, it is observed that current generative models are 
primarily designed for general tabular data synthesis, leaving several important questions 
unanswered: 
 
1. Transportation data possesses unique properties; for instance, the data collectively forms a 

transportation network. Can the existing metrics effectively capture and measure this 
characteristic? 

2. Tabular data generative models typically do not prioritize privacy preservation. How 
effectively do they perform when evaluated from a privacy preservation perspective? 
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3. The datasets commonly used to evaluate these models generally do not include transportation 
data. Will the performance ranking of these models remain consistent when applied to 
transportation data? 
 

In this paper, we aim to answer these questions by conducting a systematic evaluation of typical 
tabular data generative models [12,14,19,27,28] on transportation data, using New York City taxi 
data [25] as a case study. Our main contributions can be summarized as follows: 
 
1. We propose a novel graph-based metric to quantify the property gap between real and 

synthetic transportation data, leveraging the fact that transportation networks can naturally be 
represented as graphs. 

2. We propose an improved privacy leakage metric to investigate the privacy-preserving 
capabilities of these models and assess their vulnerabilities, particularly to membership 
inference attacks [21]. 

3. We perform a systematic evaluation of the performance of these models within the 
transportation domain, utilizing a range of metrics such as downstream task utility, 
distribution similarity, and diversity. 

 
In the remainder of this paper, we first provide a brief review of related work in Section 2 and 
present the necessary background knowledge in Section 3 to facilitate a better understanding of 
our work. Next, we introduce novel evaluation metrics in Section 4. The experimental setup and 
results are detailed in Section 5, followed by a concluding summary in Section 6.
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CHAPTER 2 

Related Work 
 
2.1 Generative Models 
 
Generative Adversarial Networks (GANs) [8] are among the most widely used generative models. 
It employs a generator and a discriminator, two competing neural networks; the generator tries to 
trick the discriminator to classify the fake data as real, while the discriminator tries to differentiate 
real and fake data. 
 
Variational Autoencoders (VAEs) [13] are another class of generative models, which map real 
data to a distribution within a latent space by an encoder, then a decoder maps from the latent 
space to the input space. 
 
Diffusion models represent the latest advancement in generative models [10]. They involve a 
forward diffusion process and a reverse denoising process. In the forward process, noise is 
gradually added to the training data with increasing magnitude until the data becomes pure noise. 
In the reverse process, a model is trained to denoise the noisy data, effectively reconstructing the 
clean data and learning the underlying data distribution. 
 
2.2 Tabular Data Generation 
 
Tabular data pose unique challenges for synthetic data generation. Unlike image data, tabular data 
often consist of a mix of continuous and discrete variables. Moreover, values in the discrete 
columns frequently exhibit imbalanced distributions, adding an additional layer of complexity to 
the generation process. [27] proposes a conditional tabular GAN (CTGAN) to address these 
challenges. CTGAN employs two distinct sampling approaches to handle discrete and continuous 
variables in the training data. For discrete variables, it first randomly selects a discrete column, 
then samples rows based on the logarithm frequency of categorical values in that column. The 
sampled categorical values will serve as conditional inputs to GAN. For continuous variables, it 
estimates the number of modes for each column with variational Gaussian mixture models [3] 
and samples by modes and normalizes the values. [27] also proposed tabular VAE (TVAE) by 
adapting VAE to tabular data. 
 
[28] makes improvements upon CTGAN motivated by several observations: Within one variable 
of the tabular data there may be mixed continuous and categorical data types, and its distribution 
may be skewed and have a long tail. The authors address these issues by proposing mode-value 
pair for mixed data types, logarithmic transformation for variables with long tail distribution, and 
an additional continuous mode as the conditional input to GAN. 
 
[14] proposed TabDDPM by adapting diffusion models to the tabular data domain, employing 
Gaussian diffusion models for continuous variables and multinomial diffusion models for 
categorical variables [11]. [12] proposed the STaSy model by directly adapting score-based 
generative modeling [22] to the tabular data domain. 
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While these techniques have shown promise in tabular data, to the best of our knowledge, they 
have not been evaluated in the context of transportation data with their unique characteristics. In 
this work, we evaluate the aforementioned tabular synthetic data generation techniques within the 
context of a transportation data use case.  
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CHAPTER 3 
Background 

 
3.1 Evaluation Metrics for Generative Models 
 
The quality of synthetic data is evaluated based on its utility and its ability to preserve privacy. 
However, higher privacy protection can potentially reduce a model’s utility. Conversely, higher 
utility (i.e., synthetic data that closely resembles real data) may increase the privacy risks. 
Balancing utility and privacy in synthetic data generation is challenging and remains an active 
research area 
[23]. 
 
In this context, utility can be assessed through various measures, including downstream task 
performance, statistical similarity, and diversity. Privacy preservation can be evaluated by 
measuring the distance between a synthetic data point and real data. Below, we present a brief 
description of these measures. 
 
Downstream Task Performance To evaluate the utility of the generated synthetic data, we 
employ a selected downstream task. In the context of taxi ride information, one critical piece of 
information is the total cost of the ride. The key question, therefore, is how effectively the 
synthetic data can be used to train a machine learning model capable of accurately predicting the 
total cost of a taxi ride. More specifically, we generate synthetic data with the trained generative 
model, train a prediction model “Gradient Boosting for Regression” [16] with the synthetic data, 
then we predict the “total amount” (i.e., the total amount paid for the taxi ride) with the training 
data and synthetic data respectively. The performance is represented by coefficient of 
determination [15]. The best possible value of R2 is 1. 
 
Similarity We use Wasserstein distance [1] to measure the similarity between two distributions 
(i.e., real vs synthetic data). 
 
Diversity We use coverage [18] to measure the diversity of a distribution, enabling us to assess 
whether mode collapse [8] has occurred. Coverage is calculated as the percentage of real sample 
hyperspheres which contain a generated sample. The real sample hypersphere is calculated with 
its Kth nearest neighbor. It is found to be more robust than the metric recall [26]. 
 
Privacy Measure The distance of a synthetic data point to its closest real data neighbor (DCR) 
serves as a metric for evaluating privacy preservation in synthetic data generation [28]. This 
ensures that synthetic records are not overly similar to individual records in the original dataset, 
thereby reducing the risk of privacy breaches. This metric is also closely related to membership 
inference attacks [21], where a distance-based metric [9] is utilized to determine whether a data 
point was included in the training dataset of the model under attack. We explore this connection 
in greater detail in Section 4.2. 
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CHAPTER 4 

The Novel Evaluation Metrics 
 

In this section, to evaluate the generated synthetic data for transportation applications, we propose 
two novel metrics. To the best of our knowledge, these metrics have not been previously used in 
the context of evaluating synthetic tabular transportation data generation. 
 
4.1 Graph Similarity Metric for Transportation Network Data 
 
Transportation data, when viewed collectively, forms a transportation network. This network can 
be effectively represented as a graph, capturing the overall transportation trends and relationships 
within the data. For instance, the pickup and drop-off locations in the NYC taxi dataset 
correspond to different zones within the city. These zones can be represented as nodes in a graph, 
providing a structured way to model the transportation network. In other words, each trip between 
two zones can be represented as an edge in the transportation graph. Let the number of trips 
between two zones 𝑖𝑖 and 𝑗𝑗 be 𝑛𝑛𝑖𝑖𝑖𝑖, then the total number of trips N =∑ 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 . Let the fraction of 
edges between two nodes 𝑖𝑖 and 𝑗𝑗 of the transportation graph G be 𝑝𝑝𝐺𝐺(𝑖𝑖, 𝑗𝑗) = 𝑛𝑛𝑖𝑖𝑖𝑖

𝑁𝑁
. Clearly, 

∑ 𝑝𝑝𝐺𝐺(𝑖𝑖, 𝑗𝑗) = 1𝑖𝑖,𝑖𝑖 , which means the fraction of edges 𝑝𝑝𝐺𝐺  represents a distribution. 
 
We can construct a transportation graph from the real transportation data, denoted as 𝐺𝐺𝑟𝑟, and 
another graph, 𝐺𝐺𝑠𝑠, from the generated synthetic transportation data. We can measure the similarity 
between the real transportation graphs 𝐺𝐺𝑟𝑟  and the synthetic ones 𝐺𝐺𝑠𝑠  by calculating the similarity 
score 𝑆𝑆𝐺𝐺  between the two graphs as follows: 
 

(1) 
 

where 𝑝𝑝𝐺𝐺𝑟𝑟  and 𝑝𝑝𝐺𝐺𝑠𝑠  represent edge number distributions for the real and synthetic graphs 𝐺𝐺𝑟𝑟 ,𝐺𝐺𝑠𝑠 

respectively, and 𝛿𝛿(𝑝𝑝𝐺𝐺𝑟𝑟 ,𝑝𝑝𝐺𝐺𝑠𝑠) is the total variation distance. 
 
4.2 Distance to Closest Record Ratio as Privacy Leakage Metric 
 
The success of membership inference attacks relies on the observation that models tend to overfit 
their training data. Consequently, the distance between training data and synthetic data is smaller 
than the distance between testing data and synthetic data. This phenomenon is also evidenced by 
the fact that training data loss is typically smaller than testing data loss. Based on this observation, 
relying solely on the distance between real data and synthetic data, as widely used in previous 
literature [5,28], may be insufficient to reliably assess the risk of privacy leakage. 
 
We therefore propose a more robust metric that uses two distances instead of one, comparing the 
two distances by calculating their ratio. Specifically, we set aside holdout testing data besides the 
real training data. Let the distance of real data to the closest synthetic data be dα(r,s), and the 
distance of holdout testing data to the closest synthetic data be dα(h,s), where α is a percentile of 
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all the closest distance values. The Distance to Closest Record Ratio (rDCR) is defined as 
. 

 
When rDCR < 1, the distance between the training data and synthetic data is smaller than the 
distance between testing and synthetic data. This indicates overfitting, making the model 
vulnerable to membership inference attacks. A smaller ratio rDCR indicates greater overfitting of 
the model to the training data, making the model more vulnerable to a potential membership 
inference attack. On the other hand, if rDCR > 1, a small distance of dα(r,s) alone may not be 
sufficient to demonstrate the vulnerability of a model to distanced-based membership inference 
attacks. 
 
The metric from [20] bears a resemblance to the rDCR metric described in this work, but there 
are significant differences. Our metric focuses on the distance to the closest synthetic data for 
each real data as it is designed to analyze the privacy leakage for the real data. In contrast, their 
metric measures the closest distance to real data for each synthetic data. Additionally, we 
incorporate a percentile-based approach to assess privacy leakage, recognizing that typically only 
a small subset of training data is vulnerable to membership inference attacks [6]. By examining 
the percentile of data at risk of privacy leakage, this percentile-based approach provides a more 
refined method for evaluating privacy leakage. 
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CHAPTER 5 
Experiments 

 
5.1 Datasets 
 
In this work, we use New York City taxi trip data [24] as the experimental dataset. This dataset 
is widely utilized in transportation research [7,17] and is one of the largest publicly available 
datasets in the domain. Its extensive size and accessibility make it a valuable resource for studies 
in this field. It is represented in a tabular data format, with each row containing detailed 
information about an individual taxi trip. 
 
More specifically, we use “2015 Green Taxi Trip Data” [25]. It has 19.2 million rows and each 
row has 21 columns. Each row represents a single trip in a green taxi, and the column fields 
include location and time for both pickup and dropoff, trip distance, itemized fares, payment type, 
tax and passenger count etc. 
 
We pre-process the data by dropping columns ‘Ehail fee’ due to too many ‘NaN’ values, changing 
each pickup/drop-off column ‘datetime’ into two columns ‘weekday’ and ‘time‘. The final data 
has 22 columns with 8 categorical variables, 2 integer variables and 12 float-type numerical 
variables. This transportation dataset is more complicated than the tabular datasets usually used 
in the previous tabular data generative model papers, due to its larger data size, mixed data type 
and higher dimensionality. In the experiments, we randomly sample a subset of the data: the test 
dataset size is 20,000, and the training data size is 40,000 by default, unless specified otherwise. 
The proposed graph metric requires knowledge of the zones into which the pickup and drop-off 
longitude and latitude coordinates fall for each trip. To fulfill this requirement, we utilize the New 
York City Green Taxi Trip Records from March 2019. A key distinction of this dataset, compared 
to the aforementioned one, is its less granular nature: locations are represented by zones rather 
than precise longitude and latitude coordinates. Notably, the zone variable is categorical, unlike 
longitude and latitude, which are numerical. This difference makes the dataset particularly well-
suited for zone-based transportation metrics. 
 
5.2 Generative Models Used for Evaluation 
 
The generative models evaluated in this paper include Gaussian Copula [19], CTGAN and TVAE 
[27], CTABGAN [28] and two diffusion-based tabular data generative models: TabDDPM [14] 
and STaSy [12]. We evaluate these models using various metrics including utility, similarity, 
diversity and privacy leakage as detailed in Sections 3.1 and 4. 
 
5.3 Experimental Setup 
 
During the experiments, for each method, three models are trained, and five times of sampling 
are conducted for each trained model. We limit the sample size to 20,000 for each sampling 
iteration due to the high memory demands of the following Wasserstein distance calculations. 
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The results are reported as the mean and standard deviation across a total of 15 sampling 
iterations. 
 
5.4 Experimental Results 
 
We report the results in separate tables, with bold fonts to highlight the best performance values, 
except for columns with values provided for reference purposes. All columns without synthetic 
data involved are for reference purposes. 
 
Table 1: In the downstream task performance testing, the model predicts the “total amount”. 
The R2 values are multiplied by 100. 

 
model dwn tr tr dwn tr syn dwn tr te dwn syn syn dwn syn tr dwn syn te 
GaussianCopula 99.93 (0.00) 75.01 (2.90) 98.80 (0.33) 99.33 (0.01) 77.55 (1.20) 80.64 (0.23) 
CTGAN 99.93 (0.01) 54.34 (1.19) 98.86 (0.42) 69.41 (1.40) 78.05 (2.29) 80.57 (2.21) 
TVAE 99.93 (0.01) 82.42 (2.00) 98.84 (0.30) 90.03 (0.76) 72.32 (2.41) 74.27 (2.83) 
CTABGAN 99.93 (0.00) 2.34 (23.57) 98.75 (0.35) 46.28 (3.09) 54.71 (20.50) 53.93 (22.83) 
stasy 99.93 (0.00) 54.93 (6.97) 98.68 (0.41) 76.87 (3.78) 88.20 (4.45) 88.35 (4.74) 
TabDDPM 99.93 (0.00) 60.26 (20.20) 98.92 (0.29) 89.38 (4.77) 94.58 (1.38) 94.69 (1.55) 

 
Downstream Task Performance As described in Section 3.1, the model predicts the total 
amount for a given trip based on the other trip information. The results are reported in Table 1, 
where “model” is the model name, “dwn tr tr” means training on training data and predicting on 
training data, “dwn tr syn” means training on training data and predicting on synthetic data, “dwn 
tr te” means training on training data and predicting on testing data, provided for reference 
purpose, “dwn syn syn” means training on synthetic data and predicting on synthetic data, “dwn 
syn tr” means training on synthetic data and predicting on training data, and “dwn syn te” means 
training on synthetic data and predicting on testing data. The three columns “dwn tr syn”, “dwn 
syn tr” and “dwn syn te” demonstrate the performance of these models. The performance of the 
models trained on synthetic data is particularly critical, as in real-world applications of data 
synthesis, only the synthetic data is typically made public for downstream tasks. The R2 values in 
the table are multiplied by 100. Our results demonstrate that TabDDPM achieves the best 
downstream task performance among the evaluated methods. 
 

Table 2: The Wasserstein distances. 
 

model w1 tr te w1 tr syn w1 te syn 
GaussianCopula 0.1365 (0.0062) 1.0357 (0.0935) 1.0340 (0.0961) 
CTGAN 0.1403 (0.0129) 0.7078 (0.0841) 0.6991 (0.0803) 
TVAE 0.1262 (0.0046) 0.9093 (0.1090) 0.9057 (0.1142) 
CTABGAN 0.1436 (0.0092) 0.4260 (0.0193) 0.4306 (0.0216) 
stasy 0.1243 (0.0035) 1.0418 (0.0437) 1.0328 (0.0357) 
TabDDPM 0.1230 (0.0025) 0.4421 (0.0326) 0.4442 (0.0331) 
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Statistical Similarity We report the experimental results for the Wasserstein distances in Table 
2, where “w1 tr te” is the Wasserstein distance between the training data and the testing data, 
provided for reference purpose, “w1 tr syn” is the Wasserstein distance between the training data 
and the synthetic data, and “w1 te syn” is the Wasserstein distance between the testing data and 
the synthetic data. The results demonstrate that CTABGAN and TabDDPM have the best 
performance among all the models. 
 
Graph Similarity Metric We report the graph similarity results in Table 3, where “G tr te” is 
the graph similarity between the training data and the testing data, provided for reference purpose, 
“G tr syn” is the graph similarity between the training data and the synthetic data, “G te syn” is 
the graph similarity score between the testing data and the synthetic data. The similarity values 
are multiplied by 100 in the table. The results indicate that all models exhibit a significant 
performance gap compared to the reference value 73.17 given in column “G tr te”. The TabDDPM 
model shows particularly low graph metric values. Further investigation shows that TabDDPM 
suffers severe mode collapse. We speculate that this issue may arise from its difficulty in handling 
categorical variables with hundreds of classes, such as the “zone” variable, or it may require 
significant additional hyperparameter tuning. Note that here we use the dataset with zone-based 
locations, as mentioned in Section 5.1. The results for the STaSy model are unavailable due to 
out-of-memory related issues, likely caused by challenges in achieving convergence. 
 

Table 3: The graph similarity score, where the original values are multiplied by 100. 
 

model G tr te G tr syn G te syn 
GaussianCopula 73.17 (0.00) 28.56 (0.87) 27.21 (0.31) 
CTGAN 73.17 (0.00) 25.87 (0.72) 24.69 (0.38) 
TVAE 73.17 (0.00) 33.21 (2.41) 32.67 (2.04) 
CTABGAN 73.17 (0.00) 32.12 (6.09) 29.96 (6.06) 
STaSy 73.17 (0.00) N/A N/A 
TabDDPM 73.17 (0.00) 11.56 (2.84) 11.17 (2.80) 

 
Table 4: The Coverage in the table is reported as the percentage of the coverage. 

 
model cov tr te cov tr syn cov te syn 
GaussianCopula 74.60 (0.24) 0.62 (0.12) 0.65 (0.13) 
CTGAN 74.88 (0.17) 19.95 (1.40) 19.52 (1.33) 
TVAE 74.78 (0.17) 13.94 (0.48) 13.79 (0.43) 
CTABGAN 74.83 (0.15) 2.96 (0.13) 3.02 (0.11) 
stasy 74.80 (0.12) 2.34 (0.34) 2.40 (0.32) 
TabDDPM 75.01 (0.44) 68.69 (0.61) 67.92 (0.69) 

 
Diversity We report the percentage of the coverage in Table 4, where “cov tr te” is the coverage 
of the training data by the testing data, provided for reference purpose, “cov tr syn” is the 
coverage of the training data by synthetic data and “cov te syn” is the coverage of the testing data 
by the synthetic data. The coverage values are multiplied by 100 in the table. Clearly TabDDPM 
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has the best performance. The results also reveal that all other models suffer mode dropping or 
collapse [26], as shown by their small coverage values. 
 

Table 5: The 5% quantile of the distances to the nearest neighbor. 
 

model dcr rs dcr hs rs/hs dcr rr dcr ss percentile 
GaussianCopula 0.118 (0.024) 0.118 (0.024) 1.001 (0.005) 0.003 (0.000) 0.069 (0.005) 5 
CTGAN 0.012 (0.002) 0.012 (0.002) 1.016 (0.009) 0.004 (0.001) 0.014 (0.002) 5 
TVAE 0.007 (0.000) 0.007 (0.000) 1.002 (0.010) 0.003 (0.000) 0.006 (0.000) 5 
CTABGAN 0.027 (0.003) 0.027 (0.002) 1.004 (0.004) 0.004 (0.001) 0.029 (0.003) 5 
stasy 0.026 (0.001) 0.026 (0.001) 1.010 (0.005) 0.003 (0.000) 0.020 (0.001) 5 
TabDDPM 0.003 (0.000) 0.003 (0.000) 1.006 (0.011) 0.003 (0.000) 0.003 (0.000) 5 

 
Privacy Leakage Metric We report the privacy leakage metric results in Table 5, where “dcr rs” 
is the distance to the closest synthetic record from each real training data, “dcr hs” is the DCR 
from holdout data to synthetic data, “dcr rr” the DCR within real data, “dcr ss” is the DCR within 
synthetic data, “rs/hs” is the ratio , and “percentile” is the α of the DCRs, as described in 
Section 4.2. 
 

 
Figure 1: Privacy leakage assessment 

 
Based solely on “dcr rs”, as commonly used in previous literature [28], the Gaussian Copula 
model has the best privacy preservation, while the TabDDPM model has the worst. However, the 
results also demonstrate that none of the “dcr rs” is smaller than “dcr rr”, which implies that 
actually there is possibly no privacy leakage as the synthetic data is far away from the real data. 
Just as we discussed in Section 4.2, “dcr rs” alone may be insufficient to assess the risk of privacy 
leakage. 
 
With the proposed DCR ratio metric, we calculate the rDCR for different percentile α values, and 
present the results in Figure 1. As shown in the figure, contrary to the above conclusion, the 
Gaussian Copula model is vulnerable to membership inference attacks at very small values of α, 
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where its DCR ratio is smaller than 1, while all the other models appear to be robust against 
distance-based membership inference attacks, as their DCR ratio remains approximately 1. This 
finding highlights the advantage of the percentile-based ratio metric. 
 

 
 

Figure 2: Complexity based on DCR ratio (running time in minutes). 
 
Complexity We evaluate the complexity of these models by comparing their running times. Note 
that the running time for diffusion-based models includes both the training and sampling time, 
whereas for other models, it consists only of the training time. The results are presented in Figure 
2. The running times are reported in minutes, obtained from a machine with Intel(R) Core(TM) 
i99900X CPU, 64G memory, and GeForce RTX 2080. The results demonstrate that CTABGAN 
and STaSy models have much higher time complexity than others. Although the Gaussian Copula 
model has the fast training speed, its performance is not satisfactory, especially as evidenced by 
its minimum coverage values, severe mode collapse and possible privacy leakage. The results 
indicate that TabDDPM achieves the best balance between speed and performance. 
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CHAPTER 6 
Conclusions 

 
In this project, we conduct a systematic evaluation of generative models for synthetic tabular 
transportation data generation. The evaluation is conducted based on a variety of metrics, 
including downstream tasks performance, distribution similarity, generation diversity, and 
privacy leakage. We also evaluate these models on our novel graph similarity and DCR ratio 
metrics. 
 
The results indicate that TabDDPM achieves the overall best performance across various metrics. 
However, it appears that TabDDPM may struggle to handle categorical variables with hundreds 
of classes. Additionally, the findings reveal the performance gap of the current generative models 
and the prevalence of mode collapse, underscoring the need to develop models specifically 
tailored to domains such as transportation. 
 
Furthermore, extending the evaluation beyond the New York City taxi data is expected to offer 
more insights on the current tabular generative models. 
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