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Ownership : Ownership

identification of optimal designs

o Incorporating physical experiments into design studies
o Validation of design methods and models
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Designh Education: K-12, University-Level, Industry
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Streamlined hands-on activities for
targeted design learning
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* Facilitated by reconfigurable

Generative Algorithm Design Abstractions
mechatronics systems, simulation tools

Research Strategy: Discovery at Interdisciplinary Interfaces
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physical phenomena in new ways to create new
technical capabilities

* Reconfigurable trebuchet activity with
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* Design exploration and optimization tools that

Heat Transfer

e Bolted joint design and testing

accelerate design discovery
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Foundations for design Ph.D. students
* Consensus on core topics

Lumped Parameter Dynamics

Applications:
Generative design algorithms — established in art/architecture

 Based on simple recursive rules with emergent properties

Control Design/Dynamics

* Focus on high-impact (infrastructure,

. . . e . Topology Optimization
transportation, energy, scientific discovery)

* Develop short courses and universal design
research foundations graduate course

* NSF NRT?

 Map abstract design variables to complex system design descriptions Additive Manufacturing

System Architecture Design

......... Complex fluids, VE
......... Structural Design
......... Active Suspension
l........ Hybrid Powertrain

Design/Analysis Domains:

Wide variety to support discovery of generalizable
themes and access to a variety of interfaces Design for Reconfigurability
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Strain-Actuated Solar Array (JPL/NASA) Combined Power Electronics and Static Flow Mixer Design (P&G) Wind and Wave Energy System Rheologically Complex Fluid and Hybrid Powertrain Architecture

Dual-use of arrays (power, actuation) Thermal System Design (Toyota, NSF) g Augonjat;d plhvsical experiments in design Design (NREL - collaborator) Viscoelastic Material Design (NSF) Design (Deere & Co.)
optimization loop

* For both continuum systems and network design representations
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Example Generative Design Algorithm Implementation:
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Improve data-gathering for science Design & Inverse
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