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Motivation

e Engineering systems governed by complex multi-physics
are challenging to design, because they often exhibit
subtle tradeoffs and defy our intuition.

¢ High-fidelity Multi-disciplinary Design Optimization
(MDO), based on physics-based simulations, can help
guide and inform the design of complex engineering
systems.

® Few high-fidelity multi-disciplinary analysis codes are
available to industry: how can we couple existing
disciplinary codes to enable industrial MDO?

The individual-discipline-feasible (IDF)
formulation offers a possible solution

e Consider a two discipline optimization problem:

min J(x,u(x),v(x))
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e The IDF formulation [1] introduces coupling variables, u
and v below, that eliminate the need for a full
multidisciplinary analysis at each optimization iteration:
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® This simplifies the solution of MDO problems by
maintaining modularity of the disciplinary software;
however, the large number of IDF coupling variables

and constraints poses a challenge to conventional
(matrix-based) optimization methods.
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Matrix-free Newton-Krylov can solve the
IDF formulation without explicit
constraint Jacobians

¢ \We favor derivative-based methods for large (> 10?)

design problems. Thus, we need to solve linear systems
based on the primal-dual matrix:
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e Conventional algorithms require the user to provide A
explicitly, and this is a problem for IDF: each row of A
requires a PDE solution, and it is common to have
thousands of rows.

¢ In contrast, Krylov methods only require products of the
form Kz, where z is arbitrary; these products can be
formed using two second-order adjoints, i.e. no
Jacobians are required.
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Challenge 1: nonconvexity in the context
of a matrix-free algorithm

® Newton's method does not distinguish between
stationary points, so we need to prevent convergence to
local maxima. This is difficult to do matrix-free.

® To cope with such nonconvexity, we created the FLexible
Equality-Constrained Subproblem solver, or FLECS [2].

e Numerical experiments indicate that FLECS outperforms
composite-step algorithms based on the projected
Steihaug conjugate-gradient method.
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On-going and future work

e [mplement a matrix-free interior-point algorithm to handle
iInequality constraints.

e Benchmark inexact-Newton-FLECS, using the MDF-
based preconditioner, against conventional optimization
methods on a large-scale aero-structural IDF problem.
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Challenge 2: matrix-free preconditioning
of the primal-dual matrix

® The primal-dual matrix must be preconditioned. Most
preconditioners are based on matrix factorizations, but
we do not have a matrix.

® Our approach is to construct a preconditioner based on
an approximation of multi-disciplinary feasible (MDF) [3].
This preconditioner is inspired by the reduced-space
preconditioner used in one-shot methods [4].

e The MDF-based preconditioner is effective and scales
well as the number of design and coupling variables
Increases.

Comparison of MDF and IDF on a model aero-
structural problem. Both formulations are solved
using an inexact-Newton-Krylov approach.
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