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Abstract 

Technologies to mitigate the e ects of climate change on worker health and productivity 
exist, but will employers adopt them? This depends on how labor markets work. Using data 
from over 11 million worker’s compensation claims and high-frequency weather data (2000-
2018), we explore the relationship between temperature and workplace safety, as well as the 
role of adaptation investments in mitigating this relationship. Hotter temperature increases 
workplace injury risk substantially, with days above 90�F leading to 6 to 9 percent more injury 
claims relative to a day in the 50s. Consistent with a model in which adaptation is technically 
feasible but costly, we fnd evidence for elevated accident risk in both indoor (manufacturing, 
warehousing) and outdoor (construction, agriculture) industries, and for types of injuries 
that are ostensibly unrelated to direct heat exposure (e.g. falling from heights, mishandling 
heavy equipment), which suggests that oÿcial statistics may understate heat-related injury 
burdens by a factor of four or more. Exploiting variation in what is to our knowledge the frst 
workplace heat safety mandate, we provide evidence that frms and workers may not operate 
at the Pareto adaptation frontier in private equilibrium. (JEL codes: J20, J32, I18, Q50) 
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1 Introduction 

Workplace exposure to environmental hazards is remarkably common, especially at the lower 

end of the wage distribution. Worldwide, an estimated 1.3 billion individuals work in agricul-

ture and construction, two sectors where the vast majority of work occurs outdoors (World Bank, 

2017). In the US, 78 percent of the roughly 105 million workers without a bachelor’s degree 

report routine exposure to harsh environmental conditions such as extreme temperature or 

poor air quality at work, including in predominantly indoor industries like warehousing, food-

preparation, and manufacturing (Maestas et al., 2017). 

Understanding the welfare implications of such environmental hazards is challenging, in 

part because working conditions are jointly determined by frms’ and workers’ decisions. While 

a growing body of scholarship examines the reduced-form e�ects of environmental shocks 

on labor market outcomes, relatively little is known about whether and how workers and 

frms adapt to such shocks, and whether policy has a role to play in facilitating adaptation 

investments.1 

Understanding the labor market consequences of temperature shocks is particularly impor-

tant in the context of a changing climate. Much of the U.S. South for instance has already seen 

a doubling of the number of days above 90�F relative to 1980, and is expected to experience 

at least 50 more such days per year by 2040-2050, even with aggressive mitigation e�orts.2 

Recent evidence suggests that hotter temperature can adversely a�ect health (Deschênes and 

Greenstone, 2011; Barreca et al., 2016), cognition (Gra� Zivin et al., 2017; Park, forthcom-

ing), and decision-making (Heyes and Saberian, 2019), which could in turn have important 

implications for worker productivity and safety. The overall welfare implications however, 

including for climate damages and the social cost of carbon, will depend in large part on the 

scope for adaptation to such adverse e�ects (Kahn, 2016). 

In this paper, we examine the potential for adaptation to climatic shocks in labor markets, 

focusing in particular on the e�ect of heat on workplace safety. We do so by measuring how 

temperature a�ects injuries on the job net of endogenous employment responses, examining 
1See Hanna and Oliva (2015) and Gra�-Zivin and Neidell (2012) for the e�ects of air pollution on labor supply and labor 

productivity respectively. See Gra� Zivin and Neidell (2014) for the e�ect of temperature on labor supply, and Dell et al. 
(2012); Adhvaryu et al. (2014); Somanathan et al. (2018); Zhang et al. (2018) for e�ects of temperature on labor productivity.

2While some parts of the U.S. will beneft from a reduction in extreme cold days, many are expected to experience a net 
increase in extreme temperature days, often defned as days with high temperature above 90�F or below 32�F, (Reidmiller 
et al., 2018). Even with the most aggressive mitigation policies outlined in the Paris Accords (RCP 4.5), some parts of the 
world are expected to experience over 150 additional days per year where temperatures reach above 90�F. 
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the role of adaptation investments in reducing the impact of temperature on injuries, and 

assessing how various market imperfections may infuence frms’ adaptation decisions. 

Our analysis focuses on workers and frms in the state of California. We leverage a rich 

administrative dataset which includes the universe of worker’s compensation claims over the 

period 2000-2018. This data represents a far more comprehensive picture of workplace injuries 

than most publicly available data sets, and covers a wide range of industries and average cli-

mates.3 It also spans the introduction of what is to our knowledge the frst major government 

adaptation policy aimed at regulating workplace heat safety, as described below. Linking 

injury information for 11 million claims to daily weather data at the zip code level, we exploit 

quasi-random variation in local temperature to estimate the marginal impact of temperature 

on injuries. Causal identifcation relies on the premise that idiosyncratic variation in daily 

temperature within a given zip code-month is uncorrelated with unobserved determinants of 

injury risk, and that the resulting e�ect on injuries is una�ected by potential endogenous 

changes in labor inputs, assumptions which we interrogate in further detail below. 

We fnd that hotter temperature signifcantly increases the likelihood of injury on the job. 

Across all workers in California a day with high temperatures between 90 and 95�F leads to 

a 6 to 9 percent increase in same-day injury risk, relative to a day in the 60’s. A day with 

highs in the 100 to 105�F range leads to a 10 to 15 percent increase.4 

To help interpret our empirical fndings, we outline a simple model of safety investment 

in the presence of temperature shocks. We model injury risk as a function of both direct 

physiological risk (e.g. heat stroke) and adaptation investments that improve overall safety 

but at a cost (e.g. air conditioning, construction of shade structures). Under reasonable 

assumptions, hotter temperature increases workplace injuries across a wide range of settings, 

net of endogenous adaptation investments by frms.5 For instance, consider a frm operating a 

shipping warehouse. In response to extreme temperature conditions, the frm could do nothing 

and face the possibility of higher worker turnover and higher compensating di�erentials; reduce 
3For instance, this is true compared to OSHA records, which have substantially higher reporting thresholds. Automatic 

reporting there is triggered only when a worker is killed, or more than three workers are hospitalized. The resulting estimates 
of the e�ects of heat on this outcome are also less likely than information on wages or employment to be upward biased due 
to confounding e�ects of heat on productivity and worker utility. 

4We fail to fnd evidence of signifcant impacts of extreme cold, or signifcant positive employment responses of a magnitude 
that would account for these large e�ects. The point estimates are substantially noisier for extreme cold, however, possibly 
due to the rarity of such days (e.g. days with highs below 32F) given the relatively mild winter climate of most of California. 

5Existing empirical assessments of temperature-safety relationships will almost always capture a combination of these 
two e�ects, even in cases where the reduced form is causally well-identifed, as in the burgeoning weather-economy literature 
(Gra� Zivin and Neidell, 2014; Dell et al., 2014). 
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labor inputs; or invest in physical assets and procedures that cool the facility and/or increase 

safety precautions. All of these options entail some cost, meaning that faced with temperature 

extremes, frms have an incentive to reduce the level of safety provision relative to more optimal 

conditions. 

The model implies that we should expect hotter temperature to a�ect realized injuries 

even in settings that do not involve direct exposure to the elements (e.g. indoor manufac-

turing), and for injury types ostensibly unrelated to heat exposure (e.g. falling from heights, 

mishandling equipment). We fnd evidence of both. The e�ect of heat on injuries holds not 

only for such industries as agriculture, utilities and construction, where work occurs primarily 

outdoors, but also for some industries where work typically occurs indoors. In manufacturing, 

for instance, a day with highs above 95�F increases injury risk by approximately 7 percent 

relative to a day in the low 60’s. In wholesale, the e�ect is nearly 10 percent. 

While we fnd that injuries tagged as being caused by extreme temperature spike on hotter 

days, we also fnd that the vast majority of the additional injury burden associated with 

extreme temperature comprises those not typically associated with extreme temperature, 

such as being struck by a moving vehicle or dropping harmful substances onto a body part. 

Because the latter constitutes the overwhelming majority of claims, the smaller marginal e�ect 

translates into a much larger total e�ect, which we estimate to have led to approximately 

81,000 additional injuries in California over the period 2000-2018, or roughly 4,500 per year. 

This is at least fve times the number of annual heat-related workplace injuries recorded in 

oÿcial statistics.6 

A potential concern with our empirical strategy is that labor supply or demand may 

be endogenous to daily temperature shocks. If hotter temperatures lead to increased labor 

demand the observed change in injuries will not be entirely due to heat’s e�ects on safety, 

and estimates that do not measure changes in the denominator (injuries/worker-hours) may 

be biased upward. On the other hand, if hotter temperature leads to a reduction in labor 

supply our estimates may understate the impact of temperature on injury risk. To address 

this concern, we estimate potential labor input responses to temperature shocks separately. 

We fnd no evidence that hotter temperature systematically increases employment or hours, 
6This is compared to the 850 claims per year tagged as being caused by extreme temperature in the California worker’s 

compensation microdata. Cal-OSHA’s oÿcial records suggest fewer than 60 heat illnesses per year in the state, suggesting 
an even larger discrepancy. 
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suggesting our results to be unbiased and possibly conservative estimates of the e�ect of 

temperature on injury risk.7 

As one way of examining the role of labor market frictions, we assess whether frms in 

more concentrated labor markets choose not to engage in costly adaptation investments. We 

fnd that the same temperature event leads to a greater increase in workplace injuries in more 

concentrated labor markets, consistent with this possibility.8 Indeed, it appears that many of 

the injuries documented in our data were preventable using existing technologies, suggesting 

substantial scope for adaptation. In a second set of analyses we exploit variation in workplace 

heat safety investments arising from a mandated workplace heat standard to explore the e�ect 

of policy on the relationship between temperature and injuries. In 2005, California became 

the frst state to implement legally binding heat-related workplace safety regulation. This 

policy involved an intensive information campaign, worker training programs, and mandates 

for the provision of water, rest breaks, and shade for a subset of frms during “high heat”, 

defned as days with highs above 95�F. It was unusually vigorously enforced, with Cal OSHA 

having issued over 18,000 citations for the heat standard alone as of 2018. 

We fnd economically and statistically signifcant reductions in the impact of days with 

temperature above 95�F in the period between 2006 and 2018 relative to the period 2000 to 

2005. We fnd no evidence that the temperature-sensitivity of injuries changed signifcantly 

at other parts of the daily temperature distribution, or that this e�ect is driven by di�er-

ences in overall injury reporting rates in the pre- and post-periods. The di�erence remains 

signifcant across a range of robustness tests, including analyses that omit the period after 

the Great Recession and placebos that use alternative policy cuto�s. This is consistent with 

the policy having led to increased adaptation investment with respect to extreme heat in 

particular, though it may also be driven by correlated secular trends in workplace safety, or 

contemporaneous policies at the state or Federal level. 

Contrary to previous studies that emphasize physical limits to adaptation, we fnd that 
7If our results mask intra-day or intra-week reductions in labor inputs, the implication would be that our point estimates 

understate the magnitude of the e�ect in terms of injury rates per worker-hour. Alternatively, in settings where extreme 
temperature leads to intra-day/week increases in labor inputs, for instance to meet production quotas, our estimates would 
be upward biased.

8As described below, the di�erence in temperature-injury relationships captured using this approach does not appear to 
be driven by correlated di�erences in geography, as occupations with higher concentration within a given zip code appear 
to exhibit higher temperature-sensitivity of injuries. However, because our variation in monopsony is cross-sectional, it is 
possible that these di�erences are driven by correlated unobservable characteristics of workers who are more likely to work 
in more heavily concentrated labor markets. While only suggestive, these results point to a possible role for public policy in 
facilitating adaptation on eÿciency grounds. 
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the reduction in heat-related injuries was not limited to “cooler” climates. Even in parts of 

California that experience over 50 days above 95�F per year, roughly equivalent to the 95th 

percentile of the US climate distribution, we fnd a signifcant reduction in heat-related injuries 

after the policy was implemented. This cautions against characterizing adaptation in terms of 

physical limits (Kjellstrom et al., 2016), as adaptation technologies and practices may enhance 

people’s ability to work safely and e�ectively in the heat. At the same time, our fndings 

suggest that, even when adaptation is technically feasible, its adoption and implementation 

is by no means automatic. 

To understand the welfare implications of our results we turn to a third set of analyses. 

We examine the California safety standard’s impact on wages and employment in order to 

assess how mandated adaptation costs compare to the combined willingness to pay of workers 

and frms. We fnd evidence consistent with the policy having been potentially eÿciency-

improving. Using data from the QCEW and a triple di�erence strategy that utilizes variation 

in policy treatment across industries within California compared to similar di�erences outside 

of California, we fnd that the policy had a small negative e�ect (-2 to -3 percent) on wages 

per worker and a zero or modest positive e�ect (+0 to +4 percent) on employment. These 

e�ects are remarkably consistent with Lee and Taylor (2019), who fnd using plant-level data 

from US manufacturing that randomized OSHA safety inspections lead to large reductions in 

fatality rates, a 2 to 3 percent reduction in hourly wages, and an 8 to 10 percent increase in 

employees per establishment. Taken together, these fndings suggest that safety investments 

triggered by such policies were valued by workers at more than the cost to frms. 

The rest of the paper is organized as follows. Section 2 presents motivating stylized facts 

and a simple conceptual framework. Section 3 presents the data and summary statistics. 

Section 4 assesses the causal impact of temperature on injury risk. Section 5 explores potential 

mechanisms and implications for adaptation investment. Section 6 assesses the e�ect of the 

policy. Section 7 discusses and concludes. 
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2 Background and Conceptual Framework 

2.1 Temperature Stress and Workplace Adaptation 

Many aspects of production may be sensitive to temperature. Temperature changes can pose 

direct health hazards to workers which require costly safety investments to mitigate.9 They 

may also impose indirect costs by reducing labor productivity or supply, as well as direct 

costs in the form of increased energy outlays (Deschênes and Greenstone, 2011; Au�hammer 

and Mansur, 2014).10 Recent evidence also suggests that elevated temperature can reduce 

cognitive performance (Gra� Zivin et al., 2017; Park, forthcoming) and infuence decision-

making and emotional a�ect (Heyes and Saberian, 2019; Baylis, 2020). These fndings inform 

our decision to model exposure to extreme temperature as a�ecting injury risk through a 

number of channels. 

Two recent papers - Page and Sheppard (2018) and Dillender (2019) - explore the impact 

of extreme temperature on workplace injury risk using quasi-experimental research designs, 

but present conficting evidence. Page and Sheppard (2018) fnds evidence of a monotonic 

relationship between temperature and injury risk across the U.S. using publicly available 

OSHA data, whereas Dillender (2019) suggests a U-shaped relationship in Texas. Dillender 

(2019) uses workers compensation claims and represents the analysis closest in spirit to this 

paper, but di�ers in several important ways. First, we assess the potential for adaptation using 

variation in what is to our knowledge the frst mandated climate adaptation policy operating 

through the labor market. Second, unlike Dillender (2019), we embed the analysis in a model 

of workplace safety investments that allows us shed light on potential mechanisms and the 

structure of adaptation costs empirically. Third, Dillender (2019) uses workers compensation 

claims data from Texas, which is one of few states that do not require mandatory workers 
9For instance, in seminal work, Deschênes and Greenstone (2011) fnd that an additional day with mean temperatures 

above 90�F leads to a 0.11 percent increase in annual mortality in the United States. The epidemiological and occupational 
health literature has long noted the potential links between extreme temperature and safety, but many of these studies are 
either cross-sectional in nature or follow time-series analyses for an individual plant or city, making it diÿcult to draw causal 
inference (Ramsey et al., 1983; Ramsey, 1995; Adam-Poupart et al., 2014; Kjellstrom et al., 2016).

10Gra� Zivin and Neidell (2014) document contractions in labor supply on hot days, at least for those U.S. industries 
classifed by the National Institutes of Occupational Safety and Health (NIOSH) as being highly exposed. They fnd that, 
for exposed industries such as construction, days with temperature above 100�F (37�C) lead to 23 percent lower labor 
supply than temperatures between 77�-80�F (25�-27�C). Other studies fnd micro- and macro-evidence for productivity 
impacts, though the mechanisms remain debated. Adhvaryu et al. (2014), Somanathan et al. (2018) and Zhang et al. 
(2018) document signifcant negative impacts of extreme heat on manufacturing productivity in Indian and Chinese frms 
respectively, controlling for plant-specifc productivity and seasonality in production. Deryugina (2017) fnd impacts of hot 
days on county-level income in the United States, building on work by Hsiang (2010), Dell et al. (2012), and Burke and 
Emerick (2016) looking across countries. 
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compensation insurance, whereas this study uses workers compensation claims from California, 

where workers compensation insurance is mandatory, and claims-level information on industry 

and occupation permit a richer analysis of potential mechanisms. 

While studies in agriculture have suggested signifcant scope for adaptation in response to 

shocks to crop yield (Mendelsohn et al., 1994; Burke et al., 2015), evidence of adaptation to 

labor input shocks is more limited. Some recent studies have emphasized physical constraints 

to working in the heat based on bio-engineering simulations, which limit the scope for adap-

tation by design (Kjellstrom et al., 2016). These studies leave aside the fact that, even when 

adaptation is technically feasible, its uptake and benefciaries will depend on the magnitude 

and composition of the realized cost of the adaptation technology.11 

2.2 Conceptual Framework 

We develop a simple conceptual framework that fxes ideas and guides our empirical analysis. 

We begin with the recognition that the risk of injuries on the job is determined in large part by 

actions taken by workers and frms. Proft-maximizing frms trade o� the costs and benefts 

of a range of production inputs and technologies, which may include investments in working 

conditions. Utility-maximizing workers weigh the benefts of such occupational characteristics 

as workplace safety or scheduling fexibility against the prospects of working with lower pay 

(Rosen, 1974; Jones-Lee, 1974). As such, while there are reasons to believe environmental 

conditions a�ect workplace safety, realized injury risk is likely not a deterministic function of 

ambient environmental conditions. 

2.3 Temperature, Injury Risk, and Safety Investment 

In its simplest form, workplace injury risk can be expressed as a function of ambient temper-

ature T and safety investments S: 

Risk = R(T, S) (1) 

S may include physical investments in protective equipment or machinery as well as procedural 

elements such as worker training or safety-enhancing alterations to production processes. 
11We use “technology” in the broadest sense to include both technical innovations (e.g. A.C.) and changes to production 

practices (e.g. working at di�erent times). 
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These investments may entail pecuniary and non-pecuniary costs to the frm.12 Firms face 

a tradeo� between increasing safety investment at some cost, which we denote C(S; w(R), Z), 

and maintaining lower levels of safety but needing to pay higher wages as hazard pay w(R), 

where wR � 0.13 We make the usual concavity assumptions regarding the production of 

realized safety, and denote all other factors that infuence frm safety costs (e.g. whether or 

not work occurs indoors vs outdoors) with the vector Z. We present a formal model in the 

Appendix, and present a stylized version here for ease of exposition. 

For simplicity, suppose T represents deviations from some thermoregulatory optimum. 

Since both direct physical risk and endogenous frm responses depend on T , the relationship 

between injury risk and temperature can be expressed as the total derivative of equation 1: 

dR @R @R dS = + (2)
dT @T @S dT|{z} | {z } 

(1) (2) 

As shown above, the reduced form e�ect of temperature on injury risk depends on two 

distinct components: (1) the direct “biological e�ect” of temperature on injury risk, and (2) 

the role of adaptive investments in determining safety more broadly. Data limitations imply 

that empirical investigations likely paint only a partial picture of this total derivative. 

Why might frms change safety investment in response to changes in temperature? To 

the extent that compensating di�erentials hold, if only in expectation, frms would have an 
dSincentive to minimize worker turnover and future wage increases: > 0, so long as @R > 0dT @T 

and wR > 0.14 On the other hand, frms may reduce safety investments in response to 

changes in temperature if it increases other costs or reduces product demand. It is therefore 
12In addition to direct costs of equipment or machinery, frms may incur opportunity costs such as the time required to 

train employees and provide breaks, or lost production from operating a conveyor belt more slowly. Typically, workplace 
safety investments are modeled as being provided by the frm as job amenities. Some have suggested that workplace safety 
investments are provided by individual workers as well (Guardado and Ziebarth, 2019). 

13For expositional clarity, we forego formal treatment of the “kissing equilibrium” generated by sorting on heterogeneous 
workers and frms as in Rosen (1974), and simply note that, in a given labor market, workers and frms will agree to a 
market-clearing wage-o�er curve, the slope of which will be represented by the term wR. We note that, while it is standard 
in the literature to assume that workers have full information on frm-specifc injury risks R, in practice, it may be possible 
for informational imperfections to drive a wedge between actual and perceived risks. 

14Compensating di�erentials provide ex ante compensation for injury risk. Workers can also be compensated by ex 
post payments in the form of workers compensation insurance. As is standard in the literature, we assume that workers 
compensation insurance payments typically o�er incomplete compensation for all of the costs of injuries (Ehrenberg and 
Smith, 2016). Estimates suggest that worker’s compensation typically covers less than 25 percent of the total costs of 
accidents (Leigh, 2011). In addition, frms taking part in employer-provided health insurance programs may pay for added 
risk in the form of higher insurance premiums, as well as sick leave and potential disability payments. Dobkin et al. (2018) 
fnd that social insurance only covers 60 percent of total costs associated with hospitalizations when these costs are measured 
to include lost future earnings, even for those with health insurance. 
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theoretically possible to observe dR > 0 even in settings where the direct “biological e�ect” is dT 

small or even zero, due to the e�ect of temperature on costs and the associated reduction in 

overall levels of safety investment, as in the case of indoor warehousing workers noted above. 

One practical implication of equation 2 is that it may be diÿcult to measure @R exper-@T 

imentally, since running an experiment that holds adaptation investments fxed and tallies 

resulting injuries would be unethical, and in situ settings where adaptation investments are 

completely fxed may be rare. An important limitation of engineering estimates of the e�ect 

of hotter climates on labor (e.g. Sherwood and Huber (2010); Kjellstrom and Crowe (2011)) 

is that they must rely on simulated estimates of @R which are then extrapolated to future@T 

climates without information on potential changes in adaptation investments. However, equa-

tion 2 also implies that there is a reasonably broad set of conditions under which we would 

observe a positive relationship between extreme temperature and injuries net of endogenous 

responses (dR > 0), which motivates our empirical strategy below. dT 

2.4 Empirical Application 

In order to estimate the e�ect of high-frequency variation in temperature on injury risk, the 

econometrician must account for the fact that observed injury counts represent a combination 

of changes in risk and potential changes in worker-hours:15 

Injuries = Risk × WorkerHours = R(T ) × L(T ) (3) 

Any observed temperature-injury relationship can therefore be decomposed into a combi-

:16nation of dR and dL 
dT dT 

dINJ dR = L(T ) + dLR(T ) (4)
dT dT dT 

Prior evidence suggests that environmental externalities including air pollution (Hanna and 

Oliva, 2015) and hot temperature (Gra� Zivin and Neidell, 2014) may reduce same-day labor 
15So far, we have couched the analysis in terms of injury risk, which represents a stochastic probability. Such risks are 

often expressed as an injury rate: for instance, injuries per 100,000 FTE workers per year. However, spatially and temporally 
granular measures of injury rates are often not available. We are aware of no publicly available data sets that measure injury 
risk at the daily level, for instance. Often, the best available measures are industry or occupation-level averages of injury 
rates measured annually. The paper that comes closest to measuring injury rates intra-annually is Lavetti (2020), who 
studies deep-sea fsherman by voyage. 

16To be exact, one could further decompose the term to allow for separate responses on the intensive and extensive margins: 
dL dEmp dHrs = .
dT dT dT 
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supply, which would mean that dL < 0, and estimates of dINJ that do not take these changes dT dT 

into account would understate the true change in injury risk. Alternatively, one can imagine 

settings where product demand increases on hot days (e.g. emergency healthcare services, ice 

cream vendors), leading to increased labor demand dL > 0.dT 

We note that the vast majority of existing studies on the e�ect of extreme temperature 

on injury (with the notable exception of Dillender (2019)) are either cross-sectional analyses 

that su�er from the usual omitted variable bias or case studies wherein endogenous responses 

are not accounted for, limiting the policy relevance of reduced form estimates even in the few 

cases where e�ects are causally well-identifed. 

In addition, the above framework suggests that, across a wide range of settings, extreme 

temperatures lead to increases in realized, net-of-safety-investment injury risk. In the ap-

pendix, we present a model of frm production and worker utility maximization to derive the 

conditions under which this prediction holds. The model predicts a positive temperature-

risk relationship if: (i) product markets are perfectly competitive (labor markets need not be 

perfectly competitive), (ii) costs are convex, preferences are concave, and production inputs 

are not gross complements, and (iii) extreme temperature either a�ects injury risk directly 

(@R > 0), and/or increases frm costs, and/or reduces labor productivity. @T 

One implication is that, even in settings where there is little to no direct exposure, extreme 

temperature can raise injury risk due to cost-minimizing frm responses. These may include 

indoor settings where labor is not directly exposed to the elements, if climate control is 

suÿciently costly or heat adversely a�ects other production costs. This is important because it 

suggests that heterogeneity in the main e�ect should not necessarily track the indoor/outdoor 

status of a job or industry. Rather, we should expect to see signifcant e�ects in some indoor 

industries to the extent that higher outdoor temperatures make cooling or other adaptation 

investments more costly, and/or the level of total compensation for the marginal worker is 

insuÿciently high for such amenities to be provided in equilibrium. The vast majority of 

existing research and policy focuses on outdoor workers and a subset of exposure-induced 

heat illnesses as opposed to injuries broadly (e.g. Jacklitsch et al. (2016)), despite the large 

number of manual occupations that engage primarily in indoor work. 

Finally, whether or not policies aimed at encouraging adaptation investments improve 

social welfare will depend on whether workers and frms are operating at the Pareto adaptation 
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frontier ex ante. Given compensating di�erentials, we would expect some of the costs of 

an adaptation policy, if binding, to be passed on to workers in the form of lower wages. 

The greater the costs of such investments, and the more the investments are orthogonal to 

productivity, the larger the negative impact on employment, wages, and frm proftability. In 

the presence of behavioral, informational or other labor market frictions, however, mandated 

beneft policies may improve eÿciency. 

3 Data and Summary Statistics 

3.1 Worker’s Compensation Claims 

We combine confdential records of workplace injuries in California from the Department of 

Workers’ Compensation (DWC) over the period 2000 to 2018 with zip code level information 

on daily temperature from the same period. A signifcant advantage of the workers’ com-

pensation data relative to other measures of injuries is its relative comprehensiveness, though 

anecdotal reports suggest that many minor injuries still go unreported. California legally 

obliges employers to maintain worker’s compensation insurance, regardless of the number of 

employees or size of establishment. Failure to provide coverage is a criminal o�ense punishable 

by a fne of not less than $10,000 or imprisonment for up to one year or both, and the state 

can issue penalties of up to $100,000 against illegally uninsured employers. 

The workers compensation records include the zip code of the worksite at which the injury 

took place, and the date of injury as reported on the First Report Of Injury (FROI). In 

addition to information on the date and location of these incidents, our data details the cause 

of injury (e.g. fall), type of injury (e.g. strain), and body parts a�ected by the injury (e.g. 

knee), as well as information on industry classifcation by claim.We collapse the 11,146,912 

individual injury records for which site of injury information is available to the zip code- and 

day-level, resulting in a balanced panel with 11,596,536 zip code-day observations from 2000 

to 2018. 

3.2 Local Weather Data 

We combine these injury records with gridded reanalysis data on daily maximum temperatures 

by the PRISM Climate Group, which provides daily meteorological information at a 4km by 
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4km resolution for the continental United States. We obtain the PRISM data for the period 

2001 to 2018, and match workplace injuries with daily temperature records based on the 

zip code of the injury sites and the reported date of injury. To account for possible non-

linearity in e�ects, we assign the maximum temperature recorded on any given zip code-day 

to a vector of 15 temperature bins, using 5�F increments ranging from below 40� to above 

105�F.17 To control for potential e�ects of rainfall on workplace safety, we link each zipcode-

day observation with its corresponding daily precipitation record. We assign precipitation 

records to a vector of four rainfall bins, namely: days with no precipitation, days with less 

than half an inch of precipitation, days with half an inch to one inch, and days with more 

than one inch of precipitation. 

3.3 Employment, Wages, Hours 

We take information on employment and wages by county, 2-digit industry, and quarter from 

the QCEW for the period 2000 to 2018. To avoid spurious results arising from selection into 

and out of the sample, we retain only the subset of county-industries for which there are no 

missing observations between 2000 and 2018. This results in a balanced panel of 1,865,016 

county-industry-quarter observations. We merge this information with the PRISM data by 

county-quarter, aggregating the temperature variables into a vector containing the counts of 

the number of days in each temperature bin, and precipitation into a variable indicating the 

total amount of precipitation in that county-quarter in inches. 

We collect monthly data on hours worked from the U.S. Current Population Survey (CPS) 

from 2000 to 2018 (Flood et al., 2020). The CPS asks a rotating sample of workers representing 

the U.S. labor force a series of questions each month, including the “actual hours worked last 

week,” where “last week” refers to the week including the 12th day of the month. We collect the 

full sample of responses to this question and keep all workers who report being employed and 

in the labor force during the month sampled.18 Using the merged PRISM data we calculate 

the number of days in the reference week in each temperature and precipitation bin. 
17We determine the upper and lower cuto� of the range based on the distribution of commonly observed temperatures in 

California, plotted in Figure B2.
18We code as missing respondents who report hours worked greater than 168, and link all respondents to their households 

and merge the matched data to our PRISM weather data using the county reported in the CPS household data. On average, 
workers report working 38.6 hours in the reference week but responses range from 1 to 168 hours worked. The CPS does not 
report county of residence in the individual respondent fles. However, respondents can be linked to surveyed households 
using respondent to household links provided by the CPS. 
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3.4 Industry Information and Labor Market Concentration 

We generate industry (NAICS) and occupation (SOC) codes for a subset of the injury claims 

in our data set. We do this by taking industry codes provided in the raw claims data, 

removing clearly erroneous codes, and parsing the remaining codes using a tool provided 

by the National Institute of Occupational Safety and Health (NIOSH).19 This tool allows 

us to assign probabilistic matches of occupation codes to 2-digit NAICS code-occupation 

description pairings in the raw data. For instance, an observation with NAICS code “11” and 

occupation description “Day Laborer” would be assigned to SOC code 45-2092, “Farmworkers 

and Laborers”. Of the 12.86m claims in our original data set, approximately 7.71m have both 

an occupation description and a valid NAICS code, and we are able to assign SOC code 

matches for approximately 0.73m occupation descriptions that occur at least 10 times in our 

raw data. The median match probability is 89 percent. This allows us to assign SOC codes 

to approximately 1.195m observations, to which we assign local Herfndahl-Hirschman Indices 

(HHI) information by occupation and commuting zone (CZ) from Azar et al. (2020). 

3.5 Summary Statistics 

Table 1 presents summary statistics for injuries (Panel A) and temperatures (Panel B). On 

average, there are roughly 1.01 injuries per zip code-day in California during the sample 

period. Injuries oÿcially classifed as being caused by extreme temperatures are relatively 

rare, with an average of approximately 850 cases per year, which amounts to 14,574 between 

2001 and 2018. This number is already at least 15 times larger than oÿcial statistics reported 

by Cal-OSHA, suggesting signifcant under-counting in publicly available records. As shown 

in table B1, the most frequently recorded incidents include back injuries (14%), injuries of 

fngers, hands, and shoulders (11, 9 and 5%), strains (30%), contusions and lacerations (11%). 

In total, injuries of core body organs account for 20 percent of observed injuries. 

Figure 1 shows the spatial distribution of injuries across California, expressed in terms of 

raw injuries and injuries per establishment, illustrating the pervasiveness of workplace injuries 

across industries and geography. Figure 2 plots changes in injuries over time. Workplace 

injuries appear to be pro-cyclical (Panel A, fgure 2), and also seasonal, with more injuries 

occurring during the summer months. 
19Available here: https://wwwn.cdc.gov/nioccs3/ 

14 

https://wwwn.cdc.gov/nioccs3


� 

Panel B of Table 1 summarizes the zip code-level exposure to extremely high temperatures. 

On average, daily maximum temperatures exceed 80�F and 90�F on 56.4 and 24.6 days per 

year respectively. Given California’s size and varied topography, both average climates and 

daily temperature fuctuations vary considerably across the state, in many cases even within 

counties. For instance, the high temperature on a given day may vary by over 25�F across 

zip codes within Los Angeles County alone. Some parts of California such as San Francisco 

experience few if any days above 90�F per year, whereas others such as Bakersfeld experience 

many dozens each year. 

4 Empirical Analysis (1): Temperature and Injuries 

4.1 Empirical Strategy 

In our frst empirical examination we exploit variation in local temperatures on any given 

day within zip code and month (Figure 2 and 3), and rely on the fact that this variation 

is plausibly exogenous to unobserved determinants of workplace injuries, net of location-

specifc seasonality. Specifcally, we examine whether realized injuries are higher on a hotter-

than-average day within a given zip code-month-year cell. In the context of our analytical 

framework we are estimating the dINJ object on the left-hand side of equation 4, or the total dT 

impact of higher temperatures on workplace injuries inclusive of any changes in labor supply. 

We implement this empirical strategy with regressions of the form: 

F (Injicdmy) = �K
k=1 

kTempicdmy + �P
p=1�

pPrecipicdmy + �im + my + �icdmy (5) 

where F (Injicdmy) denotes a transformation of the count of injuries in zip code i located 

in county c on day d, month m and year y. Below, we present results using OLS (raw 

counts, injuries per worker), inverse-hyperbolic sine (IHS) transformations, and a Poisson 

specifcation, to assess the sensitivity of the fndings to zero observations and outliers. For 

parsimony, we harmonize the main fgures and tables using the IHS specifcation, noting 

that these estimates appear to be the most conservative. Tempicdmy denotes a vector of 

K daily maximum temperature bins, ranging from below 40� to above 105� Fahrenheit in 

5� Fahrenheit increments. Precipicdmy denotes a vector of P precipitation bins, assigned 

based on daily precipitation in inches. �im denotes a zip code-calendar-month fxed e�ect, 
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which accounts for all time-invariant determinants of workplace safety by zip code (e.g. rural 

vs. urban locations, high vs. low income areas), as well as zip code-specifc seasonality in 

injury risk (e.g. regional di�erences in construction or agricultural harvest seasons). my 

captures month × year fxed e�ects, which account for any state-wide economic shocks and 

macroeconomic trends. 

To further account for potential spurious correlation between local warming trends and 

economic conditions, we also present estimates that replace my with cmy, a county × month 

× year fxed e�ect. This latter control is feasible given the relatively large counties in Cal-

ifornia – there are approximately 30 zip codes per county – and potentially important for 

identifcation, as trends in economic conditions and regional warming/cooling patterns might 

be spuriously correlated.20 �icdmy denotes a zip code-date specifc error term. Standard errors 

are clustered at the level of county and calendar month to account for possible serial correla-

tion in risk within zip codes as well as spatial correlation in temperature shocks. The main 

results are robust to various alternative levels of clustering (e.g. zip code, zip code and date), 

which we present in Table B7. 

Our analysis identifes residual injury risk as a function of idiosyncratic (daily) temper-

ature shocks net of current adaptation investments. The key parameters of interest are the 

�K
k=1 

kTempicdmy coeÿcients. In particular, we are interested in the e�ect of days with espe-

cially cold or hot temperatures, where the ’s are interpreted as increases in injury incidence 

relative to a day in the optimal (omitted) category, which we set to 60-65�F following existing 

studies (e.g. Gra� Zivin and Neidell (2014)). The main identifcation assumption necessary 

to interpret these coeÿcients as causal is that residual variation in temperature – net of the 

fxed e ects and controls noted above – is uncorrelated with residual variation in the error 

term. In other words: that within a given month and year, and net of zip code-specifc season-

ality in injury risk, zip code-days with hotter temperature are not correlated with unobserved 

determinants of injury risk, an assumption we fnd to be highly plausible. The main threat 

to identifcation comes from potential endogenous changes in labor inputs, a possibility we 

discuss in greater detail below. 
20See Figure B1 for warming and cooling trends observed in the data. 
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4.2 Main E�ect 

The main results from running equation 5 are presented in table 2. As shown in column (3), 

a day with highs between 85 and 90�F appears to increase injuries by 0.026 arcsinh points 

(se=0.0078), which represents an approximate increase of 4.8 percent relative to the baseline 

mean in the omitted category of days with highs in the 60 to 65�F range. A day in the 100 to 

105�F range leads to an increase of approximately 6.6 percent, an e�ect that is statistically 

signifcant at the 5 percent level. Adding month-year fxed e�ects (column 4), or a more 

restrictive set of controls that include county-by-month-year fxed e�ects (column 5) does not 

alter the profle or signifcance of these e�ects materially.21 

Figure 4 plots these coeÿcients and their 95 percent confdence intervals, again omitting 

the 60 to 65�F bin. Days with highs in the 80’s and above clearly lead to increased injuries, 

with progressively hotter days leading to more injuries relative to milder days in the 60’s. 

Interestingly, the point estimate appears to drop o� slightly at temperatures above 105�F, 

though the estimates are substantially noisier given the relative rarity of such extreme events. 

In contrast to Page and Sheppard (2018) and Dillender (2019), we fnd no evidence for 

signifcant impacts of extreme cold, though the point estimates on colder bins is positive. 

These estimates are noisier, possibly due to the relatively limited number of extremely cold 

days in much of California. There appears to be some evidence indicating that the optimal 

temperature for workplace safety – at approximately 50 to 55�F – may be below the range 

suggested by studies of thermal comfort or mortality (Deschênes and Greenstone, 2011; Albouy 

et al., 2016). This suggests that the magnitudes relative to an ideal working temperature are 

approximately 25 to 50 percent larger than those reported above given our selection of omitted 

category. 

4.3 Robustness of Reduced Form 

Given the non-normal distribution of injury counts at the zip-code day level, we present 

results running variants of equation 5 using a Poisson specifcation. As shown in columns 

(1) - (5) of Table 3, heat’s e�ect on injuries remains highly signifcant and exhibits the same 

pattern of increasing intensity on hotter days. The point estimates are more precise and all are 
21Coeÿcients on the colder temperature bins are suppressed for parsimony. The full set of temperature coeÿcients are 

presented in Appendix table B5. 
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signifcant at the 1 percent level, apart from the noisier 105�F bin. The implied magnitudes 

are somewhat larger using the Poisson specifcation: a day with highs in the 85 to 90�F range 

increases injuries by approximately 6 percent (compared to 4.8% above), whereas days in the 

100 to 105�F range lead to a 9 percent increase relative to days in the 60 to 65�F range. Again, 

the optimal temperature range from a workplace safety standpoint appears to be lower than 

previous studies of heat and human performance, implying that relative to an optimal day in 

the 50s, a day in the 100 to 105�F range increases injuries by upwards of 15 percent (Figure 

5). 

We provide a series of additional robustness checks in the Appendix. These include speci-

fcations that present simple OLS on injury counts (Table B4), and ones that divide injuries 

by the number of workers in each county-quarter (Figure B3).22 The results are remarkably 

consistent across these alternative specifcations. 

To allow for the possibility of “Monday e�ects”, or the possibility that daily temperature 

within a month may be correlated with start or end of month e�ects in work patterns, we run 

versions of equation 5 that include day of week and day of month fxed e�ects (Table B6). 

The results are essentially unchanged. Table B7 probes the sensitivity of the main e�ect to 

alternative clustering of standard errors, and suggests the results to be insensitive to sensible 

alternative clustering, including those that allow for spatial correlation of temperature within 

counties and serial correlation across days. 

Because many workplace injuries are reported to the worker’s compensation division a 

few days after an injury occurs – either because the worker shows up to the hospital in the 

days following an incident, or because an acute injury is being treated in the ER frst and 

claims flled out later – it is possible for the reported date of injury to exhibit some error in 

recall. Consistent with this possibility, we fnd using a dynamic distributed lags variant of 

equation 5 that heat increases injury risk in a two-day window spanning the reported date of 

injury on the claim (Figure B4). We fnd no evidence that hotter temperature more than 2 

days before or after the reported date of injury signifcantly a�ects injury risk. We also fnd 

that, using 3-day or 5-day rolling averages of temperatures and injuries results in larger and 

more precise estimates across the board. This suggests that the same-day e�ects presented 
22While the results are robust to this alternative characterization of the dependent variable, we note that if endogenous 

labor input responses are occurring at the daily level, such relatively crude controls for worker-hours may introduce additional 
measurement error. 
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above, even when expressed relative to the ‘optimal’ 50 to 55�F bin, may understate the true, 

error-in-recall-adjusted e�ect of heat by upwards of 50 percent (Table B5). 

4.4 Endogenous Labor Responses 

As we describe in our analytical framework, labor inputs may be responsive to extreme tem-

perature, either due to changes in optimal labor supply (e.g. due to di�erences in the marginal 

utility of leisure versus labor under extreme temperatures) or changes in labor demand (e.g. 

due to declining marginal labor product or changes in product demand). In principle, this 

could occur on either the extensive (employment) or intensive margin (hours). This may af-

fect the ‘base’ from which any given increase in injury counts may be drawn.23 Our estimates 

thus far measure the total e�ect of heat on injuries (dINJ ). To understand how temperature dT 

increases the risk of injury per worker-hour (dR ) it is necessary to account for these labor dT 

responses ( dL ). If labor inputs increase in response to hotter temperature, our point estimates dT 

of heat-injury relationships may overstate the true e�ect on injury risk. If labor inputs tend 

to decrease in response to hotter temperature, our estimates likely understate the true e�ect 

on injury risk. Finally, as equation 4 suggests, if there are no labor supply responses to heat 

= dRthen our estimates refect the change in risk per unit of work (dINJ ).dT dT 

Our prior given existing work (Gra� Zivin and Neidell, 2014) is that the e�ects presented 

above are more likely to understate than overstate the true relationship. We further probe 

this using data on employment and hours from the QCEW and CPS respectively. 

4.4.1 Employment 

We estimate the e�ect of temperature on employment using data from the QCEW and running 

regressions of the following form: 

ln(Empijqy) = �K
k=1 

kTempiqy + �Precipiqy + �q + ij + �jy + �ijqy (6) 

where ln(Empijqy) denotes log monthly employment by county i, industry j, quarter q, and 

year y, and �q, ij , and �jy denote quarter, county × industry, and industry × year fxed 
23We note that many existing studies of workplace safety use injury rates by imputing hours worked based on a formula 

suggested by the Bureau of Labor Statistics (BLS). In brief, the imputation assumes a fxed number of hours worked per 
FTE worker employed in a given establishment, frm, or industry. In a world where either labor supply or demand are 
endogenous to temperature, this approach may mischaracterize true changes in safety risk, due to the fact that both the 
numerator and denominator may be changing in counteracting directions. 
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e�ects respectively. 

We fnd no evidence of signifcant employment responses to hot temperature. As shown 

in Table 4, days with max temperature above 90�F have a reasonably precisely estimated 

zero e�ect on log quarterly employment, with 95 percent confdence intervals that rule out 

employment e�ects larger than +0.068 percent or smaller than -0.02 percent per 100�F day. 

If we assume that every work day in the quarter we above 100�F, this would imply an e�ect 

size of approximately -1.3 to +4.4 percent quarterly employment. The e�ect of days in the 

90s is even smaller, with a 95 percent confdence interval of -0.022 percent to +0.026 percent. 

This fnding holds across a range of specifcations, including ones that account for possible 

spurious correlation between regional or state-level warming trends and trends in economic 

conditions (columns 4 and 5). It remains possible that more temporary, same-day increases 

in employment are o�set by reductions on other days within the quarter, or vice versa, which 

would be undetectable using this data. 

We do however fnd evidence of signifcant negative employment impacts of cold days 

– days with max temperatures below 30�F – and some evidence of reduction due to higher 

precipitation. The e�ect of a day with highs below 30�F is to reduce quarterly employment by 

approximately 0.1 percentage points, signifcant at the 1 percent level. The implied magnitude 

is that, if every workday had highs below 30�F, quarterly employment would be reduced by 

6.6 percent (-0.1 x 66 workdays) relative to a quarter where every workday had highs in the 

60’s. 

We fnd no evidence that 90�F days change quarterly employment signifcantly.24 Looking 

across industries by 2-digit NAICS code, we fnd that the zero average e�ect masks some 

heterogeneity by industry for more extreme days. In construction, manufacturing, retail, and 

fnance and insurance, we observe small positive employment e�ects of days above 100�F; 

whereas in agriculture, education, utilities, accommodation and food services, we see small 

negative e�ects. For instance, a 100�F day increases quarterly employment by approximately 

0.15 percent (signifcant at 1 percent) in construction, and by 0.06 percent in manufactur-

ing (signifcant at 10 percent). In accommodation and food services, we see a reduction in 

employment of 0.11 percent per 100�F day. Precipitation has particularly large negative em-

ployment e�ects in agriculture, mining, construction, transportation, and accommodation and 
24Accommodation and food services is a notable exception. 
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food services. It seems possible that some portion of the temperature-injury relationship in 

construction, manufacturing, and retail may be driven by changes in labor inputs, though 

it is diÿcult to assess without temporally (daily) and geographically disaggregated data on 

hours worked whether the magnitude is suÿcient to account for all or even the majority of 

the relationship. 

4.4.2 Hours Worked 

Similarly, to assess the impact of exposure to high temperatures on hours worked we estimate 

variants of the following equation: 

IHS(Hrs)iswy = �k
K 
=1 

kTempiswy + Precipiswy + �im + sy + �iswy (7) 

where IHS(Hrs)iswy denotes the IHS transformation of hours worked in MSA i, state s during 

week (month) w and year y. Tempiswy denotes a vector of K 5�F temperature bins, ranging 

from below 40� to above 105� F, where each MSA-day during the reference week is assigned to 

a bin according to daily maximum temperature. Precipiswy is the total precipitation during 

the reference week in the MSA. �im denotes an MSA × week (month) fxed e�ect. sy denotes a 

state × year fxed e�ect, and �iswy denotes an error term. Standard errors are clustered at the 

county level. We also include various state-by-month and state-by-year trends in robustness 

checks. We weight all regressions using the full period link weights provided by IPUMS. 

Table 5 provides results from running variants of equation 7. As shown, we fail to fnd 

evidence that hotter temperature signifcantly increases or decreases weekly hours worked. 

When we focus on the subset of workers in highly exposed industries, or those that spend 

more than 20 percent of their time exposed to the elements based on occupation information 

from O*NET, we fnd a similar zero e�ect, though point estimates for the hottest temperature 

bins are insignifcantly negative across the board. 

4.5 Interpretation 

Our results here indicate that high temperatures increase injuries in the workplace. We’ve 

presented evidence that suggests higher temperatures do not signifcantly increase either the 

number of workers employed or hours worked by individual workers. While it is possible that, 
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given the relative coarseness of the employment/hours data, undetected positive employment 

e�ects are upward-biasing the e�ect of daily temperature on injuries, the relative magnitude 

of the changes in employment and hours as well as the pattern of heat’s e�ect on injuries 

across industries suggest that it is unlikely for endogenous labor input responses to be solely 

responsible for the temperature-injury relationships documented here. In the Appendix, we 

discuss various alternative explanations, including potentially endogenous incident reporting, 

which we also take to be unlikely to be driving our results. 

5 Empirical Analysis (2): Mechanisms & Adaptation Costs 

Our frst set of results suggests that extreme temperature has a signifcant impact on work-

place injuries and workplace injury risk, net of potential endogenous safety or labor input 

responses. However, it is unclear to what extent such heat-injury relationships are simply due 

to “unavoidable” direct exposures, or a result of cost-minimizing decisions on part of frms 

who can choose the level of e�ective safety investment. 

5.1 Outdoor vs Indoor Work Settings 

One important upshot of viewing adaptation as an investment in worker safety undertaken 

by cost-minimizing frms is that we would predict heat to infuence safety decisions for both 

indoor as well as outdoor workplaces. Whereas workers in predominantly outdoor industries 

such as agriculture or construction may experience increased risk due to direct exposure, 

indoor workers in manufacturing, automobile repair, or warehousing may also be a�ected if 

providing cooling in such workplaces is suÿciently costly. Using incident-level information on 

workers’ industry at the 2-digit NAICS level, we assess whether the e�ect of heat on injuries 

is limited to outdoor industries. 

Figure 6 shows the results of running equation 5 by industry for select industries where 

work is likely to occur predominantly outdoors (top panel: agriculture, construction, utili-

ties), as well as for industries where work is likely to occur primarily indoors (bottom panel: 

manufacturing, wholesale trade, warehousing). As is clearly visible in these cases, hotter 

temperature can increase injuries in both indoor and outdoor work settings. In the case of 

manufacturing, a day in the 95 to 100�F range increases injuries by approximately 10 percent 
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relative to days in the 60 to 65�F range. In wholesale trade, this e�ect is almost 15 percent. 

Other predominantly indoor industries where we observe signifcant positive heat-injury rela-

tionships include sub-segments of retail trade (NAICS = 44, e.g. automobile parts dealers), 

accommodation and food services (72, e.g. hotels, restaurants, drinking establishments).25 We 

do not fnd strong temperature-injury relationships in information (51), fnance and insurance 

(52), management of companies (55) or healthcare and social services (62). 

5.2 Heterogeneity by Injury Type 

To the extent that the heat-injury relationship is in part a function of endogenous safety 

investments, it should not be limited to those injuries that arise from direct exposure to the 

elements. This is important because in examining the impact of heat on workplace injuries 

the public health literature has focused nearly exclusively on the subset of incidents that 

are classifed as “heat illnesses”, including heat syncope, heat rash, or heat stroke. In many 

manual-labor intensive industries accidents arising from mistakes or inattention cause far more 

injuries than heat illness and frms invest considerable time and energy in preventing these 

accidents. Given existing work linking extreme temperature to reduced cognitive performance 

and attention (Seppanen et al., 2006; Gra� Zivin et al., 2017; Park, forthcoming; Cook and 

Heyes, 2020), one possibility is that some of these injuries of inattention may not be unre-

lated to temperature. Further, it implies that the cost frms incur to minimize error-induced 

workplace injuries may be higher on hotter or colder days. 

Using claims-level information on the oÿcial cause of injury, in addition to information 

on the body part(s) a�ected, we provide evidence that heat not only leads to direct health 

risks (dR ), but also increases overall injury risk, due perhaps to increased costs of ensuring dT 

a given level of safety ( dS ). For instance, injuries in our data are classifed as being caused dT 

by a “Fall, Slip, or Trip”,“Moving part of Machine”, “Lifting” or “Crash of Vehicle”, as well 

as “Extreme Temperature”. There is also a separate variable that records the body part(s) 

a�ected, including such entries as “Ear”, “Eye”, “Back” or “Cardiovascular system”. 

Table 6 presents results of estimating the main e�ect on two mutually exclusive subsets of 

the data: injuries classifed as being caused by “Extreme Temperature” and all others. The top 
25Within manufacturing, the industries with the largest impacts appear to include food processing, textiles, and apparel 

manufacturing. We note that manufacturing and kitchen workers, despite being located indoors, are considered highly 
exposed to heat by NIOSH. 

23 



panel of fgure 7 presents the resulting coeÿcients graphically. Perhaps not surprisingly, there 

is a very strong relationship between hot temperature and injuries tagged as being caused 

by “Extreme Temperature”. A day with max temperature in the 90 to 95�F range increases 

the frequency of such claims by approximately 276 percent (p=0.01) relative to the mean: 

a day above 105�F, by approximately 760 percent (p=0.01). Days with temperatures below 

80�F exhibit no statistically signifcant increase in the number of claims tagged as caused 

by extreme temperature. We fnd no evidence for cold temperatures causing an increase in 

such claims, though as mentioned above, most work in California occurs in milder climates, 

limiting the number of days with highs below freezing. 

When we replace the outcome variable with all other injuries, we fnd a positive relationship 

between hot temperatures and claim frequency. The magnitude of this relationship is perhaps 

not surprisingly smaller in percentage terms, but nevertheless statistically signifcant and 

economically meaningful. A day in the 90 to 95�F range leads to a 4.5 percent increase 

(signifcant at p=0.05), and a day in the 100 to 105�F range leads to a 6.1 percent increase 

(signifcant at p=0.05). Even days in the 80 to 85�F range result in a 3.2 percent increase 

in injury claims (p=0.10). In terms of the total number of injuries, these “non-heat-related” 

claims comprise the vast majority of residual injury burden associated with extreme heat. 

Over the period 2000-2018, there were on average 654,000 such claims per year in California, 

compared to 850 injuries caused by “Extreme Temperature” per year. These fndings are 

consistent with (Dillender, 2019), who also fnds e�ects of temperature on claims not classifed 

as temperature-related. 

When we look at the e�ect of temperature on injuries and illnesses that involve core body 

organs versus those involving extremities, we see similar positive e �ects of heat on both types 

(bottom panel of Figure 7, columns 3 and 4 of Table 6). We take this to be consistent with 

heat a�ecting not only heat illness, as has been the focus of most public health studies and 

regulatory analyses, but workplace safety risk more generally. These fndings are consistent 

with temperature exposure reducing cognitive performance and decision-making ability, which 

could directly a�ect worker safety in environments that feature heavy machinery, moving 

vehicles and objects, or working on elevated surfaces. It seems plausible that a non-trivial 

proportion of the injuries attributed to falling from a ladder or being struck by a crane that 

occur on a hot day may not have otherwise occurred were it not for the disruptive infuence of 
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extreme temperature on cognition and attention. Given the signifcant positive relationship 

between temperature and injuries not categorized by California policymakers as being related 

to temperature, we fnd it unlikely that the main e�ect documented here is driven entirely by 

endogenous reporting and/or regulations unique to the California setting. 

5.3 Heterogeneity by Local Labor Market Concentration 

Our model also provides predictions regarding the profle of environmentally-induced work-

place injuries according to local labor market imperfections, including search costs and result-

ing monopsony power. Emerging evidence suggests that monosponistic labor markets may be 

more prevalent than previously assumed (Naidu et al., 2016; Manning, 2020). All else equal, 

we would expect workers in more monopsonistic labor markets to tolerate greater workplace 

disamenities before terminating employment relationships. To the extent that safety is a com-

ponent of total compensation, this would imply that frms would (a) provide less safety for a 

given wage ex ante, and (b) face a lower compensating di�erential with respect to reductions 

in workplace safety and thus be expected to respond less to elevated risk due to extreme 

temperature.26 

We assess heterogeneity in the main e�ect by level of labor market concentration, using 

occupation-by-commuting zone measures of HHIs. As shown in fgure 8, the temperature-

injury relationship appears to be far more pronounced in labor markets with above median 

HHIs, where percentiles are defned across all occupation-CZs in the US from 2013-2016. While 

our measures of labor market concentration do not vary experimentally, and are extrapolated 

backward in time based on estimates from 2013-2016, they nevertheless capture variation in 

HHIs across occupations within a given commuting zone, making it less likely that our es-

timates are driven by geographic di�erences in unobserved dimensions of workplace safety. 

Naturally, it is possible for workers in more concentrated labor markets to exhibit charac-

teristics that make them more prone to heat-induced injury (e.g. worse baseline health or 

higher risk tolerance) irrespective of frm investments. Nevertheless, we take these results as 

suggestive of the possibility that labor market frictions a�ect the realized level of adaptation 

to environmental shocks. 
26We note that, in the presence of wage rigidities (e.g. minimum wages), frms may alter the composition of total 

compensation to favor safety and other non-wage amenities. We leave an exploration of this possibility to future work. 
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5.4 Oÿcial Statistics of Heat-Related Safety Burden 

One important implication of these estimates is that workplace safety risks due to hotter 

temperature may be a far more pervasive phenomenon than oÿcial statistics suggest. To es-

timate the total magnitude of heat-induced workplace injuries, we use the �K
k=1 

kTempidmy 

coeÿcients from the main (IHS) specifcation above, noting that this likely provides a con-

servative estimate. We multiply the percentage increase in injury risk for each temperature 

bin above 80� Fahrenheit with the average number of days in each temperature bin observed 

in California over the study period. Aggregating across temperature bins, and taking the 50 

to 55�F bin as the “optimal” reference bin, we obtain an estimate of 4,500 injuries caused by 

hotter temperatures per year in California, or approximately 81,000 over the study period. 

We note that, using the Poisson specifcation, this fgure would be nearly 30 percent larger. 

These estimates suggest that oÿcial statistics may understate the injury/illness burden as-

sociated with hotter temperature substantially. For instance, relative to oÿcial heat-illnesses 

as reported by Cal-OSHA (approximately 60 per year), the actual number of heat-related 

workplace injuries and illnesses may be over 75 times larger. 

It appears that oÿcial statistics in the U.S. and elsewhere may understate the contem-

porary public health burden associated with temperature exposure on the job. According to 

the latest Centers for Disease Control (CDC) criteria document, a rule-making guidebook, 

the number of heat-related injuries is reported as being around 4,000 per year in the entire 

United States (Jacklitsch et al., 2016). 27 

6 Empirical Analysis (3): Adaptation Policy (Workplace Safety 

Mandate) 

We have shown that hotter temperature increases workplace safety risk net of potential en-

dogenous labor input responses and frm/worker safety investments. The latter channel, while 

possibly important in understanding adaptation to climate change, is often diÿcult to observe. 

In this section, we exploit potential changes in the heat-sensitivity of frm safety investments 
27The CDC notes that such fgures may be underestimated due to the challenges of attributing individual cases to extreme 

temperature, but few estimates of the magnitude of under-counting exist. For instance, according to Jacklitsch et al. (2016): 
“Estimating the public health impact of extreme heat is diÿcult because hospitals and health care providers are not required 
to report heat-related illnesses, such as heat stroke and heat exhaustion, to public health agencies. In addition, heat-related 
deaths are often misclassifed or unrecognized.” 
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arising from what is to our knowledge the frst mandated workplace heat safety standard. 

The predicted e�ects of such a policy are ambiguous ex ante. 

6.1 Policy Background: California Heat Illness Prevention Standard 

We exploit the fact that, in the US (and possibly globally), there have never been legally 

binding mandates specifc to heat-related illnesses and injuries at the Federal level, and that, in 

late 2005, California passed what was then the only binding workplace heat-illness prevention 

standard in the country.28 The California Heat Illness Prevention (HIP) standard (Cal/OSHA 

subchapter 7, group 2, article 10, section 3395) was fled on August 8th 2005 as an emergency 

measure implemented within 17 days and was initially e�ective for 180 days, and subsequently 

passed by the State Assembly on July 7, 2006.29 

The standard applies to all “outdoor places of employment”, broadly defned. It requires 

employers to provide a range of structural, informational, and procedural investments aimed 

at reducing heat-related safety risks. For instance, it mandates access to shade and water, in 

addition to provisioning employees and managers with training on how to prevent heat illness. 

The policy also mandates paid rest breaks of 5 minutes each hour on days with temperatures 

expected to reach above 95�F for a subset of exposed industries including agriculture, min-

ing, landscaping, and construction, as well as a buddy system that prohibits workers from 

engaging in solo work on high heat days. There is an emphasis on provision of information 

to both managers and workers, including through formal training, media advertisements, and 

community outreach. For instance, the Division of Industrial Relations (DIR) sponsored the 

airing of informational radio ads (over 9,000 airings) and highway billboards, as well as a 

series of webinars and training programs. We reproduce text from Cal-OSHA’s website on 

one component below:30 

“Employers must train all employees, both supervisory and non-supervisory, on the risk 
28The other prominent heat-related workplace policy that we are aware of is the Chinese worker heat subsidy program, 

which pays workers additional wages on days with high temperatures and which went into e�ect in 2012 (Zhao et al., 2016). 
29In California, an emergency measure can be fled in “a situation that calls for immediate action to avoid serious harm to 

the public peace, health, safety, or general welfare.” As soon as it is fled, it is e�ective for 180 days and can be readopted for 
two 90-day periods. HIP was implemented as a permanent regulation on July 7th, 2006, after two readoption periods. In the 
analyses that follow, we treat 2006 as the frst year in which the policy is active, though we assess alternative break-points 
as well. We note that, as the legislation was put into e�ect as an emergency measure, pre-emptive investments by frms may 
have been less likely than in other regulatory settings. However, as we discuss, frms with indoor workplaces may have taken 
the policy as a signal of potential future indoor regulation.

30Full text available at: https://www.dir.ca.gov/dosh/heatillnessqa.html. For information on specifc informational in-
terventions, see: https://www.dir.ca.gov/dOSH/HeatIllnessCampaign/Heat-Illness-Campaign.Evaluation-Report.Summer-
2012.pdf 
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factors for heat illness, signs and symptoms of heat illness, methods to prevent heat illness, and 

policies and procedures established to comply with this regulation. Training must be provided 

before the beginning of work involving a risk of heat illness. ... As a best practice, some 

employers use a daily “tailgate meeting” approach, starting out each work shift with a brief 

safety reminder about issues considered particularly relevant to the work to be performed that 

day.” 

The policy was followed by a vigorous enforcement regime. Figure B7 shows the frequency 

of the subset of Cal-OSHA inspections that resulted in a violation of the HIP standard between 

2006 and 2017. Figure 9 plots their locations over time. Employers found to have been in 

violation of the standard could be fned up to $250,000 or shut down until safeguards were put 

in place.31 Inspection data from OSHA suggests that there have been over 18,000 recorded 

violations of the standard since 2006. 

6.2 E�ect of Policy on Injuries 

6.2.1 Event Study 

To assess the e�ectiveness of the policy, we frst investigate changes in temperature-related 

injury risk in an event study framework. To the extent that the policy specifcally targets 

heat-related adaptation investments, we might expect the temperature-sensitivity of injuries 

documented in section 4 to be reduced after the policy relative to before. To test this we 

augment equation 5 with an indicator variable for post-2005: 

F (Injicdmy) = �K
k=1�

kTempicdmy × Postdmy + �K
k=1 

kTempicdmy+ 

�P
p=1�

pPrecipicdmy + Postdmy × �im + cmy + �icdmy (8) 

As in equation 5, F (Injidmy) denotes an IHS transform of the count of injuries (or other 

variations, including Poisson) in zip code i located in county c on day d, month m and year 

y, and cmy denotes county × month × year fxed e�ects. In contrast to equation 5, we allow 

�im to vary by “treatment” period – that is, before and after the policy – to ensure to the 

extent possible that comparisons of the e�ect size are not confounded by secular trends in 
31Some examples are presented here: https://www.ehstoday.com/construction/article/21906709/california-worksites-shut-

down-for-heat-regulation-violations. 
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injury counts after 2005 (e.g. due to the 2008 recession). �icdmy again denotes a zip code-date 

specifc error term. Standard errors are clustered two-way at the level of county by calendar 

month. If the policy was binding we would expect the di�erence between �k coeÿcients after 

the policy and �k coeÿcients before the policy to be negative. 

Figure 10 plots the temperature coeÿcients (�1 - �K ) and their associated 95 percent 

confdence intervals pre- and post-2005. The e�ect of hotter temperature on injury risk 

appears to be signifcantly lower in the period following policy adoption relative to prior to 

adoption. Table 7 presents each of the coeÿcients, their respective p-values, and the results 

from tests of signifcance in the di�erences between them (pre- vs post-). As shown, the 

temperature-sensitivity of injury claims is statistically signifcantly di�erent for the 100 to 

105�F bin (p=0.01) as well as the 105�F and above bin (p=0.10).We fnd no evidence that 

temperature sensitivity of injuries are signifcantly di�erent at other parts of the temperature 

distribution, though the post-period coeÿcients for temperatures above 70�F are uniformly 

lower than their respective pre-period counterparts. 

6.2.2 Robustness 

We take this evidence to be consistent with some combination of information provision and/or 

mandated safety investment having led to a reduction in the heat-injury relationship. How-

ever, alternative interpretations are possible. For instance, if the ensuing recession of 2008 led 

to a tighter labor market and a lower willingness on part of workers to report injuries condi-

tional on their occurrence, and the reduction in the proportion of injuries reported is lower 

for those injuries that tend to occur on hotter days, then it is possible for the e�ects noted 

above to be driven by a spurious relationship between time and the profle of injuries across 

temperature days. While we cannot rule out this possibility, several additional robustness 

checks suggest it to be unlikely as the only mechanism. 

When we compare the temperature-profle of injuries using alternative time cuto�s, in-

cluding a comparison of two periods after 2006, we fnd little evidence of signifcant changes. 

In addition, when we estimate separate interactions for each of the temperature bins for each 

year of the sample, we fnd a reduction in the heat-sensitivity of injury post-policy. These 

changes are statistically signifcant at the 5 percent level in nearly all of the post-policy 

periods. Figure 11 plots the results from one subset of these interactions, plotting the inter-
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actions between the 95 to 100�F bin and each year prior to and after 2005 separately, with 

their respective 95 percent confdence intervals. Figures B10 and B11 present similar plots 

for additional temperature bins. While it is diÿcult to state defnitively that this pattern of 

reduced heat-sensitivity is due to the policy per se, taken together, the evidence presented 

in fgures 11, B10 and B11 suggest that there is a signifcant non-transitory reduction in the 

heat-sensitivity of injuries post-policy. 

It is possible that other factors a�ecting the temperature-sensitivity of injuries happen to 

coincide with the adoption of the standard, including possible secular trends in technology. 

If the reduction in heat-sensitivity of injuries is driven by changes in technology over time, 

we might expect similar di�erences to manifest across arbitrary time cuto�s unrelated to the 

policy. In Figure B8, we present analogous plots using time cuto�s that bisect the pre-2005 

and post-2005 periods. In neither case do we fnd any evidence for changes in the temperature-

injury relationship over time. In Figure B9, we present analogous plots that omit the period 

after 2010, as well as omit the year 2006 in order to account for possible e�ects of false 

precision due to a longer post-period, or idiosyncrasies of the reference year, and fnd that 

this has little e�ect on the main result. 

6.3 Limits to Adaptation 

Previous work has emphasized potential “limits” to the extent to which adaptation can mit-

igate the impacts of high heat on worker safety, particularly in outdoor work environments 

(Kjellstrom and Crowe, 2011; Kjellstrom et al., 2016; Dillender, 2019). For instance, Dillen-

der (2019) fnds that the heat-sensitivity of mining injuries is not signifcantly di�erent in 

historically warmer versus cooler parts of the United States, which, combined with evidence 

of limited scope for reduced labor inputs, is taken to suggest limits to adaptation. Here, we 

probe this idea further, leveraging the wide range of average climates that occur within the 

state of California. 

Running variants of equation 5 separately for di �erent terciles of the California climate 

distribution (which, for the purposes of this exercise, we defne in terms of the number of days 

above 95�F during the study period), we fnd little evidence that the temperature-sensitivity of 

injury varies signifcantly across climates, consistent with Dillender (2019). However, when we 

further interact the temperature coeÿcients to explore the change in temperature-sensitivity 
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over time by climate tercile (pre- vs post-2006), we observe that heat-injury relationships 

appear to fall signifcantly across the climate distribution. As shown in Figure B12, even in 

the hottest tercile – which averages 52 days above 95�F per year – the coeÿcient on days 

above 100�F is signifcantly di�erent (p=0.03) in the period 2006-2018 relative to the period 

2001-2005. Such climates are roughly equivalent, in terms of frequency of extreme heat events, 

to the 95th percentile of the US climate distribution. This cautions against characterizing 

adaptation to climate change in the workplace in terms of physical “limits”, at least in the 

context of workplace safety. Our results suggest that even frms in very hot areas are in fact 

able to adapt to extreme heat. This suggests that the achievable limits of adaptation may be 

endogenous to the investments undertaken by workers and frms, and possibly the presence 

or absence of policies that mandate such investments. 

6.4 Interpretation 

We interpret these results as suggesting that workplace adaptation investments can be e�ective 

even in areas that have experienced historically high average temperatures. The simplest 

explanation for our results is that the mandated benefts – water breaks, shade structures, etc 

– directly reduced the impact of temperatures on workers in ways that reduced injury risks. 

It is possible that the policy reduced risk via other channels as well. It may be that the policy, 

by providing information regarding the true safety risks of high temperature, helped induce 

additional safety investments, even in some “unregulated” industries. This would certainly be 

consistent with qualitative accounts of CalOSHA feld operatives as well as previous survey-

based analyses which suggest that managers are often not fully aware of the suite of health 

risks faced by workers, and rely in part on OSHA guidelines to anchor expectations regarding 

underlying environmental risks (Levine et al., 2012; Jia et al., 2016). The frequency and 

geographic breadth of enforcement activity could have strengthened either channel. Johnson 

(forthcoming) for instance fnds that frms within a 50 mile radius of plants found to be in 

violation of OSHA safety standards subsequently improved workplace safety, irrespective of 

the specifc type of violation. Finally, it may be that what we observe is simply the result of 

secular changes in adaptation technology that happened to coincide with the policy. 
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6.5 Welfare Implications of Policy: E� ect of Policy on Wages and Employ-

ment 

While these fndings are suggestive, on their own they cannot tell us whether a policy improved 

eÿciency, which depends on net benefts and costs. If markets are in competitive equilibrium, 

there is no eÿciency case for mandated benefts of the kind described above. Where employers 

and employees can negotiate freely and frictionlessly over the total compensation package, they 

can be expected to reach a mutually benefcial outcome. Non-wage benefts, including safety, 

would be provided up to the point where an extra $1 spent by employers on benefts is valued 

by employees at exactly $1. On the other hand, theory suggests that there may be instances 

when mandated benefts could improve eÿciency (Summers, 1989). First, this may be the case 

if there are behavioral or informational frictions, either on part of employer or employee – for 

instance, if one or both parties do not fully understand heat related safety risks or the true cost-

e�ectiveness of various adaptation options. Second: if there are externalities associated with 

the adaptation investment. For instance, to the extent that worker’s compensation insurance 

is only partially experience-rated, injuries at a more lax establishment would impose negative 

externalities on others (Ruser, 1985). 

Even without obvious behavioral failures or externalities, search frictions may prevent the 

kind of bargaining described in the perfectly competitive case above. In such a world it 

is possible that heat safety investments are more valuable to workers than they are costly 

to frms, but do not occur in private equilibrium. One might then expect a binding safety 

mandate to lead to reduced wages but possibly increased employment. Alternatively, in a 

world where government mandates prove to be more costly to provide than their value to 

workers, we might expect both negative wage and employment e ects. Finally, if there are 

suÿcient fscal or other externalities as above, it remains possible that a policy is eÿciency-

enhancing even if it results in negative wage and employment a�ects.32 

32An additional implication is that, when using observed behavior in labor markets to estimate the scope for adaptation 
to climate change it is important to consider the underlying market structure. This is true both for estimating adaptation-
inclusive damage functions as well as for inferring welfare costs of avoidance behavior. One immediate implication is that, 
depending on the joint distribution of climate parameters and the degree of labor market frictions, existing empirical estimates 
of adaptation may be biased in ways that make it diÿcult to bound adaptation costs (Carleton et al., 2018). 
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6.5.1 Wages and Employment 

Here, we assess the costs of the policy to workers and frms using data on wages and employ-

ment. We focus on the e �ect of the policy on wages and employment by 2-digit industry and 

county-quarter, using data from the QCEW (2001-2017), and a triple di�erence estimation 

strategy. Unlike the case of injuries, we are able to assess using non-California data whether 

the e�ects we observe are driven by California-specifc policies or other national or regional 

trends coincident with the 2005 standard. 

Specifcally, we run regressions of the following form: 

ln(Yijqy) = POSTiqy × TREATj × CAi + + �ij + ° qy + �ijqy (9) 

where ln(Ysjqy) represents the outcome variable (log employment, log wages per worker) for 

county i, industry j, state s, quarter q, and year y. CAi is a dummy denoting counties in 

California, POST is a dummy for post q2 of 2005. TREAT is a dummy for whether or not 

industry j was “treated” by the policy, which may depend on one’s hypothesis regarding the 

relevant policy features (e.g. information treatment vs direct mandates). We therefore present 

results for three alternative defnitions of treated industries. The frst includes all industries 

that are either directly regulated as “high heat” industries in the text of the standard, or 

appear to have been signifcantly a�ected by some dimension of the policy based on the 

empirical analysis in section 6.2 (we call these “All a�ected” industries); the second considers 

only the subset of a�ected industries that are explicitly targeted in the standard (“Regulated 

and a�ected”); and the third is to consider industries that appear to have been a�ected in 

terms of injuries but were not directly targeted as part of the mandate (“Unregulated but 

a�ected”). is a vector of all two-way interactions and individual dummies (e.g. POSTiqy × 

CAi). �ij denotes a vector of county-by-industry fxed e�ects, which account for time-invariant 

county-level di�erences in economic conditions a�ecting each industry. ° qy represents a vector 

of quarter-by-year fxed e�ects, which account for all correlated economic shocks across the 

country. 

The identifcation assumption is that the di�erence in outcomes between treated and un-

treated industries is evolving similarly across states (CA vs others) save for the policy. If this 

assumption is true, then identifes the causal e�ect of the policy on employment and wages, 
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relative to its e�ect on untreated state-industry-quarter cells. This assumption would be vi-

olated if there are compositional changes in the California economy that are systematically 

di�erent from the rest of the country, or other contemporaneous shocks that have di�erential 

a�ects across industries and states. While we cannot directly verify these parallel trends as-

sumptions, plotting trends in wages and employment for a�ected and una�ected industries is 

instructive (Figures B13 and B14). Trends in wages and employment in a�ected industries 

appear to be roughly parallel prior to the implementation of the policy. However, it is clear 

from these fgures that the Great Recession had a large impact on wages and employment, 

and that its impacts may have been larger in some industries in California than elsewhere. 

As such, we focus our analysis on the quarters proceeding the great recession excluding data 

after Q1 2008. 

Tables 8 and 9 present the results from running equation 9 above for wages and employ-

ment respectively. To account for the possibility that our results are biased due to incomplete 

coverage of agricultural workers - a well-documented feature of the QCEW data - we present 

results including (excluding) agriculture in columns 1-3 (4-6). The coeÿcients on the triple 

interaction term in Table 8 suggest that the policy had a modest negative e�ect on wages 

of approximately 2-4 percent: approximately 0.025 log points (a�ected and unregulated, col-

umn 3) and 0.037 log points (a�ected and regulated, column 2). These e�ects are robust to 

alternative clustering of standard errors, and the exclusion of agricultural workers. 

The corresponding coeÿcients in Table 9 suggest that the policy appears to have had a zero 

or mildly positive a�ect on employment. Specifcally, the results indicate that regulated in-

dustries experienced a signifcant relative employment increase of between 0.028 and 0.041 log 

points, whereas the e�ects on a�ected and unregulated industries is positive (0.01 to 0.012 log 

points) but statistically insignifcant.33 To gain more insight into employment consequences, 

we conduct a similar set of analyses using data from the CPS on the number of hours worked 

in the week prior to the date of the CPS survey, and fnd no evidence of signifcant changes 

in hours resulting from the policy.34 

33In the appendix, we present the results including years after the great recession. These results suggest similar negative 
wage impacts of between 0.02 and 0.03 log points, but a di�erent pattern for employment, with a large negative employment 
impact on regulated and a large positive employment impact on unregulated industries. While we cannot verify this, such 
fndings would be consistent with the Great Recession having a�ected certain industries in California – notably, agriculture, 
construction, mining, and other services — particularly adversely. Is also consistent with the fact that the coeÿcient on 
the CAxPOST term is negative, suggesting that the recession had a di�erential impact on a�ected industries in California 
relative to other states. 

34We estimate the same triple di�erence specifcation but replacing employment and wage data from the QCEW with the 
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Wage and employment impacts of this direction and magnitude are consistent with Lee 

and Taylor (2019), who fnd using plant-level data from US manufacturing that randomized 

safety inspections led to signifcantly improved safety (a 45 percent reduction in fatality rates), 

a 2 to 3 percent reduction in hourly wages, and an 8 to 10 percent increase in the number of 

employees per establishment. Notably, they fnd that employment increases for both produc-

tion and non-production workers, the latter being consistent with the addition of safety and 

process managers. Levine et al. (2012) and Johnson (forthcoming) also fnd that randomized 

inspections and their subsequent publicizing led to a reduction in injuries without measur-

able impacts on frm sales and turnover. Our results build on these fndings by providing 

evidence on the e �ects of government regulation on the health and safety impacts of extreme 

temperature. 

If these estimates are unbiased, the implication would be that the policy was valued by 

workers at an amount equal to or greater than the cost to frms. This would suggest that, 

absent such a policy, workers and frms may not have been operating at the Pareto adaptation 

frontier. We estimate that the policy prevented on average 1,800 heat induced injuries per year 

in California, mainly for workers in agriculture, construction, warehousing, manufacturing 

and other services. The reduction in injury risk, along with possible improvements in thermal 

comfort, appear to have been valued by workers at more than the cost to employers. 

7 Conclusion 

Environmental conditions such as pollution or extreme temperature can impose large costs on 

workers and frms. This is true even when marginal impacts are small given the broad base 

of working-age individuals and the number of workers whose occupations involve exposure to 

the elements. Understanding the e�ects of extreme temperature may be of particular welfare 

and policy relevance given the expected increases in temperature extremes due to climate 

change. Measuring the true impact of such working conditions is diÿcult, however, because 

both workers and frms can in principle engage in avoidance behaviors to mitigate these costs. 

log of hours worked in the previous week from the CPS as the outcome. We present results of this CPS analysis in table 
10. We fnd no evidence that hours worked decline in either regulated or unregulated a�ected industries. The estimated 
coeÿcients are negative and statistically insignifcant, ranging from -0.0028 log points (a�ected, unregulated) to -0.0069 log 
points (a�ected, regulated). These fndings are consistent with reduced wages, or downwardly rigid nominal wages combined 
with a reduction in hours (resulting in reduced wages per worker, as above). 
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These choices are not always directly observed, and may be infuenced by underlying labor 

market frictions. In this paper, we assess the consequences for workers and frms of extreme 

temperature on the job, in a setting that allows us to also examine how adaptation decisions 

may both reduce these consequences and be distorted by underlying labor market conditions. 

We fnd that hot temperature substantially elevates workplace injury risk. A day with high 

temperatures between 90 and 95�F leads to a 6 to 9 percent increase in same-day injuries, 

relative to a day in the 60’s. A day with highs in the 100 to 105�F range leads to a nearly 15 

percent increase. These e�ects do not appear to be driven entirely by endogenous changes in 

labor inputs, either on the extensive (employment) or intensive (weekly hours) margin. Nor 

are the impacts limited to heat-illnesses. On hotter days, workers are substantially more likely 

to be injured in a variety of ways not directly related to heat. We estimate there are an of 

average 4,500 annual injuries in California caused by extreme heat but not reported as a heat 

injury. This implies heat related injuries are at least 500 percent more frequent than current 

estimates, which focus on heat-illnesses such as heat-exhaustion or heat-syncope. 

Many of these injuries appear to be preventable, suggesting signifcant scope for adaptation 

to future climate change. But for reasons that are as yet unclear, many such adaptations do 

not appear to take place in private equilibrium. One possibility is the presence of labor 

market frictions. California’s mandated workplace heat safety regulation appears to have 

substantially reduced the heat-sensitivity of workplace injuries. We estimate that hotter 

temperature caused approximately 1,800 fewer injuries per year in California since 2006, or 

approximately 22,000 injuries in the 13 years following policy implementation. Valued at an 

NPV of $45,0000 per injury in 2020 dollars Leigh (2011), this comes out to approximately 

$81,000,000 per year in estimated social benefts. At the same time, the policy appears to 

have reduced wages modestly but with zero or even positive employment e�ects, consistent 

with the investments having been valued by workers at more than the cost to frms. These 

results suggest that the policy may have solved important frictions preventing workers and 

frms from operating at the Pareto adaptation frontier ex ante. 

Our fndings are consistent with extreme temperature a�ecting worker physiology, cogni-

tion, and decision-making (Deschênes and Greenstone, 2011; Gra� Zivin et al., 2017; Park, 

forthcoming; Heyes and Saberian, 2019), which has been shown in other settings to a�ect 

realized injury risk (Dillender, 2019). They are also consistent with extreme temperature 
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reducing labor and total factor productivity (Colmer, 2018; Somanathan et al., 2018; Zhang 

et al., 2018), or simply increasing marginal costs due to extreme temperature, which leads 

proft-maximizing frms to reduce safety investment. Our fndings are broadly consistent with 

Barreca et al. (2016), Carleton et al. (2018), and Park et al. (2020), who fnd that adaptation 

investments including air conditioning can reduce direct impacts of heat on health and hu-

man capital outcomes, and build on Garg et al. (2019), who study the e�ect of cash-transfer 

programs on the temperature-violence relationship in Mexico, and fnd that cash infusion sub-

stantially reduces this relationship. Our paper is the frst to our knowledge to show the e ect 

of a targeted adaptation policy on labor market outcomes, and one of the frst to empirically 

estimate labor market adaptation. 

One immediate policy implication of these fndings is that estimates of the social cost of 

carbon that do not incorporate temperature’s e�ects on workplace safety may understate the 

magnitude of the carbon externality. These estimates also suggest that climate change may 

further exacerbate trends in total compensation inequality – not only across but also within 

countries, given the higher likelihood of lower-skilled workers to work in occupations that 

involve exposure to the elements (Maestas et al., 2017). However, our results also underscore 

the importance of considering the scope for adaptation in projecting damages from climate 

change, and the empirical challenges of doing so. To the extent that the California policy 

reduced the marginal impact of hot temperature on injury risk without signifcant impacts on 

wages and employment, this would imply that frms and workers were not operating at the 

Pareto Frontier of adaptation investment. Labor market frictions may be an important reason 

why, which highlights the importance of investigating these and other potential constraints 

to adaptation to climate change or other environmental externalities. 

Our results indicate workplace heat exposure constitutes an important workplace dis-

amenity, particularly for those who work in exposed industries such as construction and 

mining. From a welfare standpoint, workplace injuries are especially important for at least 

two reasons. First, to the extent that they a�ect working-age adults, the social costs of mor-

bidity and lost work time are likely to be higher than for the elderly who drive the majority 

of mortality estimates. Dobkin et al. (2018) for instance fnds that workplace injuries can 

not only have large direct health care costs, but lead to persistent wage impacts that a�ect 

injured worker’s entire subsequent earnings trajectories. Second, the relationship between 
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climatic variables and workplace safety carries important distributional implications. If de-

mand for amenities such as workplace safety is lower in low wage jobs (Hamermesh, 1999; 

Pierce, 2001), then even if labor markets are perfectly competitive, the e�ects of more ex-

treme temperatures will be regressive. Given that many workers in exposed occupations have 

low levels of formal education – a recent RAND survey fnds that over 78 percent of men 

without a bachelor’s degree report routine exposure to extreme environmental conditions at 

work, compared to 36 percent of those with a bachelor’s degree (Maestas et al., 2017) – it may 

be important to better understand the potential distributional implications of occupational 

temperature exposure. 
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Tables and Figures 

Table 1: Summary Statistics 

Notes: Table 1 presents key summary statistics of the working data set, which collapses injury and 
temperature information by zip code and day over the period Jan 1 2001 to Dec 31 2018. Panel A 
provides information on workplace injuries. Panel B provides information on temperature. 

Panel A: Injuries 

Variable Mean Median S.D. 25th 75th Observations 

Injuries 1.01 0.00 2.07 0.00 1.00 11,596,536 
Injuries (T=60-65F) 1.20 0.00 2.38 0.00 2.00 1,004,586 
Injuries - Cause: Extreme Temperatures 0.00 0.00 0.04 0.00 0.00 11,596,536 
Injuries - Cause: All Other Causes 1.01 0.00 2.06 0.00 1.00 11,596,536 
Injuries - Body Part: Core Body 0.19 0.00 0.74 0.00 0.00 11,596,536 
Injuries - Body Part: All Other 0.81 0.00 1.63 0.00 1.00 11,596,536 

Panel B: Temperatures 

Variable Mean Median S.D. 25th 75th Observations 

% Days 60-65F (Omitted Bin) 0.12 0.00 0.30 0.00 0.00 11,596,536 
% Days 80-85F 0.10 0.00 0.27 0.00 0.00 11,596,536 
% Days 85-90F 0.08 0.00 0.24 0.00 0.00 11,596,536 
% Days 90-95F 0.06 0.00 0.22 0.00 0.00 11,596,536 
% Days 95-100F 0.04 0.00 0.18 0.00 0.00 11,596,536 
% Days 100-105F 0.02 0.00 0.13 0.00 0.00 11,596,536 
% Days Above 105F 0.01 0.00 0.08 0.00 0.00 11,596,536 
Days/Year 60-65F (Omitted Bin) 25.00 23.00 16.64 14.38 32.18 11,596,536 
Days/Year 80-85F 15.85 12.00 15.66 1.84 26.00 11,596,536 
Days/Year 85-90F 12.28 6.00 14.08 0.00 22.00 11,596,536 
Days/Year 90-95F 9.76 2.00 13.54 0.00 16.00 11,596,536 
Days/Year 95-100F 6.53 0.08 11.16 0.00 8.43 11,596,536 
Days/Year 100-105F 3.10 0.00 7.11 0.00 2.00 11,596,536 
Days/Year Above 105F 1.29 0.00 6.47 0.00 0.00 11,596,536 
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Figure 1: Injuries in California 
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Notes: Figure 1 depicts the number of injury claims over the study period (2001-2018) by zip code, taking location information for the reported 
work-site of injury. The left panel presents raw counts per zip code; the panel on the right provides the number of injuries per establishment.. 



Figure 2: Injuries and Temperatures Over Time 

Panel A: Injuries 

Panel B: Temperatures 

Notes: Figure 2 presents trends in injuries and temperatures over the years in our sample (left), as well as 
seasonality in each across months (right). The histograms in Panel A show counts of injuries occurring in 
California-based work sites during the period 2000-2018. Panel B depicts the number of 90� F days per 
year (left) and per month (right) for three representative zip codes: Los Angeles (Zip Code 1), Bakersfeld 
(Zip Code 2), and San Francisco (Zip Code 3). 
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Figure 3: Identifying Variation in Temperatures 
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Notes: The left panel illustrates the identifying variation in daily maximum temperatures for three representative zip codes across days of the 
month in July, plotting deviations from zip-code-specifc monthly means for zip codes in Los Angeles (Zip Code 1 ), Bakersfeld (Zip Code 2 ), 
and San Francisco (Zip Code 3 ). The panel on the right shows residualized variation in daily maximum temperatures in degree Fahrenheit, 
and the x-axis refers to the deviation in �F, plotting the deviation from zip code-and month-specifc means. 



Table 2: Temperature and Injuries – Main E�ect (IHS) 

(1) (2) (3) (4) (5) 
IHS IHS IHS IHS IHS 

T above 105F 0.00497 0.0249 0.0249 0.0220 0.0245 
(0.0126) (0.0150) (0.0150) (0.0156) (0.0161) 

T 100-105F 0.0317*** 0.0360** 0.0360** 0.0325** 0.0344** 
(0.00911) (0.0105) (0.0105) (0.0111) (0.0115) 

T 95-100F 0.0342*** 0.0352*** 0.0352*** 0.0315** 0.0327** 
(0.00821) (0.00938) (0.00938) (0.00993) (0.0105) 

T 90-95F 0.0259*** 0.0277** 0.0277** 0.0250** 0.0257** 
(0.00679) (0.00815) (0.00815) (0.00858) (0.00894) 

T 85-90F 0.0238*** 0.0262*** 0.0262*** 0.0242** 0.0243** 
(0.00667) (0.00747) (0.00747) (0.00778) (0.00800) 

T 80-85F 0.0178** 0.0192** 0.0192** 0.0169* 0.0168* 
(0.00551) (0.00621) (0.00621) (0.00649) (0.00678) 

N 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 
Injuries Zip/Day (60-65F) 0.67 0.67 0.67 0.67 0.67 
Injuries Zip/Year (60-65F) 245.40 245.40 245.40 245.40 245.40 
Injuries Sample/Year 38,113.66 38,113.66 38,113.66 38,113.66 38,113.66 
Injuries Sample/01-18 675,410.38 675,410.38 675,410.38 675,410.38 675,410.38 

Zip Code FE Yes No No No No 
Month FE Yes No No No No 
Year FE Yes Yes Yes No No 
Zipcode × Month FE No Yes Yes Yes Yes 
Precipitation No No Yes Yes Yes 
Month × Year FE No No No Yes No 
County × Month × Year FE No No No No Yes 

Notes: Table 2 shows the e�ect of temperature on injury claims for California-based work 
sites over the period 2001 to 2018. All coeÿcients are obtained from regressions of inverse 
hyperbolic sine transformed injury counts per zip code and day on indicator variables repre-
senting each of 15 temperature bins, as well as controls for precipitation and the fxed e�ects 
noted above. The results of the main specifcation corresponding to equation 5 are shown 
in column 5. Daily maximum temperatures are assigned to a vector of 15 temperature bins, 
ranging from 40�F and below to temperatures greater than 105�F in 5� increments. Temper-
ature bins below 80�F are suppressed in this table, but included as controls in all estimations. 
The omitted category is the temperature bin with daily maximum temperatures between 60 
and 65�F. Heteroskedasticity robust standard errors are clustered by county and year-month 
and presented in parentheses (* p<.10 **p<.05 ***p<.01). 
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Figure 4: Temperature and Injuries – Main Specifcation 

Notes: Figure 4 plots the full set of temperature coeÿcients obtained from regressions specifed 
in equation 5 (point estimates from column 5 of Table 2). All coeÿcients are obtained from 
regressions of inverse hyperbolic sine transformed injury counts per zip code and day as the 
dependent variable. They refect residual variation in injuries after regressing on zip code × 
month and county × year × month fxed e�ects, as well as controls for precipitation. Daily 
maximum temperatures are assigned to a vector of 15 temperature bins, ranging from 40�F 
and below to temperatures greater than 105�F in 5� increments. Temperature bins below 
80�F are suppressed in this table, but included as controls in all estimations. The omitted 
category is the temperature bin with daily maximum temperatures between 60 and 65�F. 
Heteroskedasticity robust standard errors are clustered by county and year-month, and 95 
percent confdence intervals are denoted by dashed lines. 
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Table 3: Temperature and Injuries – Main E�ect (Poisson) 

(1) (2) (3) (4) (5) 
poisson poisson poisson poisson poisson 

T above 105F 0.0385 0.0663 0.0664 0.0624 0.0516 
(0.0301) (0.0348) (0.0348) (0.0357) (0.0369) 

T 100-105F 0.0957*** 0.0945*** 0.0945*** 0.0891*** 0.0802*** 
(0.0189) (0.0215) (0.0214) (0.0225) (0.0235) 

T 95-100F 0.0935*** 0.0877*** 0.0877*** 0.0819*** 0.0726*** 
(0.0172) (0.0190) (0.0190) (0.0201) (0.0203) 

T 90-95F 0.0717*** 0.0680*** 0.0680*** 0.0643*** 0.0564** 
(0.0158) (0.0176) (0.0176) (0.0182) (0.0182) 

T 85-90F 0.0638*** 0.0626*** 0.0626*** 0.0602*** 0.0524** 
(0.0147) (0.0157) (0.0157) (0.0160) (0.0160) 

T 80-85F 0.0477*** 0.0472*** 0.0472*** 0.0447*** 0.0368** 
(0.0121) (0.0130) (0.0130) (0.0133) (0.0131) 

N 11,596,536.00 11,502,250.00 11,502,250.00 11,502,250.00 11,497,394.00 
Injuries Zip/Day (60-65F) 0.67 0.67 0.67 0.67 0.67 
Injuries Zip/Year (60-65F) 245.40 245.40 245.40 245.40 245.40 
Injuries Sample/Year 38,113.66 38,113.66 38,113.66 38,113.66 38,113.66 
Injuries Sample/01-18 675,410.38 675,410.38 675,410.38 675,410.38 675,410.38 

Zip Code FE Yes No No No No 
Month FE Yes No No No No 
Year FE Yes Yes Yes No No 
Zipcode × Month FE No Yes Yes Yes Yes 
Precipitation No No Yes Yes Yes 
Month × Year FE No No No Yes No 
County × Month × Year FE No No No No Yes 

Notes: Table 3 shows the e�ect of temperature on injury claims for California-based work 
sites over the period 2001 to 2018. All coeÿcients are obtained from poisson regressions of 
injury counts per zip code and day on indicator variables representing each of 15 temperature 
bins, as well as controls for precipitation and the fxed e�ects noted above. The results of 
the main specifcation corresponding to equation 5 are shown in column 5. Daily maximum 
temperatures are assigned to a vector of 15 temperature bins, ranging from 40�F and below 
to temperatures greater than 105�F in 5� increments. Temperature bins below 80�F are sup-
pressed in this table, but included as controls in all estimations. The omitted category is the 
temperature bin with daily maximum temperatures between 60 and 65�F. Heteroskedasticity 
robust standard errors are clustered by county and year-month and presented in parentheses 
(* p<.10 **p<.05 ***p<.01). 
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Figure 5: Temperature and Injuries – Main Specifcation (Poisson) 

Notes: Figure 5 plots the full set of temperature coeÿcients obtained from regressions specifed 
in equation 5 (point estimates from column 5 of Table 3). All coeÿcients are obtained from 
regressions of inverse hyperbolic sine transformed injury counts per zip code and day as the 
dependent variable. They refect residual variation in injuries after regressing on zip code × 
month and county × year × month fxed e�ects, as well as controls for precipitation. Daily 
maximum temperatures are assigned to a vector of 15 temperature bins, ranging from 40�F 
and below to temperatures greater than 105�F in 5� increments. Temperature bins below 
80�F are suppressed in this table, but included as controls in all estimations. The omitted 
category is the temperature bin with daily maximum temperatures between 60 and 65�F. 
Heteroskedasticity robust standard errors are clustered by county and year-month, and 95 
percent confdence intervals are denoted by dashed lines. 
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Table 4: Extreme Temperature and (100x) Log Employment 

(1) (2) (3) (4) (5) 

Days above 100 (�F) 0.020 0.018 0.018 0.013 0.024 
(0.032) (0.031) (0.031) (0.033) (0.021) 

Days in 90s (�F) 0.001 0.001 0.001 -0.002 0.003 
(0.013) (0.012) (0.012) (0.015) (0.013) 

Days in 80s (�F) -0.001 -0.000 -0.000 -0.003 0.003 
(0.012) (0.011) (0.011) (0.011) (0.009) 

Days below 30 (�F) -0.104��� -0.099��� -0.099��� -0.095��� -0.087��� 
(0.027) (0.025) (0.025) (0.024) (0.021) 

Average monthly precip -1.748 -1.748 -1.733 -1.763� 
(1.163) (1.163) (1.164) (0.994) 

N 1,865,016 1,865,016 1,865,016 1,865,016 1,864,224 

County FE’s Yes Yes Yes Yes Yes 
Quarter FE’s Yes Yes Yes Yes Yes 
Year FE’s Yes Yes Yes Yes Yes 
Industry FE’s Yes Yes Yes Yes Yes 
Precipitation No Yes Yes Yes Yes 
County X Industry FE’s No No Yes Yes Yes 
Industry X Year FE’s No No No Yes Yes 
Regional trends No No No No Yes 

Notes: Heteroskedasticity robust standard errors clustered by state and quarter-year are in parentheses (* p<.10 ** 
p<.05 *** p<.01). Coeÿcients in each column come from a regression of 100 times log total employment in a given 
county-industry-quarter on the variables shown.The sample is restricted to county-industries for which quarterly 
employment information is available for the entire time period (2000-2017). Temperature denotes daily maximum 
temperature. Precipitation includes average daily rainfall in inches as well as controls for snow (omitted). All 
regressions include controls for days in 30’s, 40’s, and 50’s with days in the 60’s and 70’s as the omitted category. 
Column 2 adds controls for county-year average precipitation and snowfall. Column 3 adds county-industry fxed 
e�ects. Column 4 adds industry-year fxed e�ects. Column 5 adds linear time trends by census region. 
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Table 5: Impact of Heat on Hours worked 

All Workers HE Workers 

T above 105F -0.0027 -0.0028 -0.0004 -0.0051 -0.0070 -0.0037 
(0.0028) (0.0027) (0.0035) (0.0042) (0.0048) (0.0050) 

T 100-105F -0.0019 -0.0019 -0.0005 0.0005 -0.0005 -0.0011 
(0.0020) (0.0020) (0.0023) (0.0027) (0.0025) (0.0038) 

T 95-100F 0.0000 0.0003 0.0004 0.0010 0.0002 -0.0002 
(0.0015) (0.0014) (0.0019) (0.0020) (0.0020) (0.0026) 

T 90-95F -0.0004 -0.0004 0.0004 0.0012 0.0001 0.0002 
(0.0012) (0.0012) (0.0015) (0.0016) (0.0016) (0.0020) 

T 85-90F -0.0002 -0.0000 0.0006 0.0016 0.0010 0.0016 
(0.0011) (0.0011) (0.0013) (0.0014) (0.0014) (0.0018) 

T 80-85F 0.0003 0.0004 0.0002 0.0012 0.0007 0.0002 
(0.0011) (0.0011) (0.0013) (0.0014) (0.0015) (0.0018) 

T 75-80F 0.0006 0.0005 0.0006 0.0013 0.0010 0.0005 
(0.0010) (0.0010) (0.0012) (0.0012) (0.0013) (0.0017) 

N 793,613 793,613 793,597 398,510 398,510 398,440 

MSA FEs Yes Yes Yes Yes Yes Yes 
Month FEs Yes Yes Yes Yes 
MSA × Month FEs Yes Yes 
Year FEs Yes Yes 
MSA × Year FEs Yes Yes Yes Yes 

Notes: High exposure workers are those with time outside above the median. All regressions weighted by 
CPS provided link weights. 
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Figure 6: Indoor vs Outdoor Workplaces (By Industry) 

Panel A: Outdoor Industries 

Panel B: Indoor Industries 
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Notes: Figure 6 In all of the above, the dependent variable is the inverse hyperbolic sine transformed count of injuries per zip code and day. 
Daily maximum temperatures are assigned to a vector of 15 temperature bins ranging from 40�F and below to temperatures greater than 105�F. 
The omitted category is the temperature bin with daily maximum temperatures between 60 and 65�F. Panel A plots coeÿcients obtained from 
regressions of the inverse hyperbolic sine of injuries in outdoor industries: notably, agriculture (NAICS==11), construction (23) and utilities 
(22). Panel B plots the coeÿcients from the same regressions for claims occurring in industries where work is done predominantly indoors: 
namely, manufacturing (31-33), wholesale trade (42), and transportation and warehousing (48-49). Heteroskedasticity robust standard errors 
are clustered two-way by county and year-month, and 95 percent confdence intervals are denoted by dashed lines. 



Table 6: Heat-Illness and All Other Injuries 

(1) (2) (3) (4) 
Extreme Temp All Other Core Body All Other 

T above 105F 0.00654*** 0.0212 0.0168** 0.0130 
(0.000968) (0.0159) (0.00535) (0.0140) 

T 100-105F 0.00385*** 0.0327** 0.0146*** 0.0274* 
(0.000334) (0.0116) (0.00360) (0.0104) 

T 95-100F 0.00192*** 0.0318** 0.0113** 0.0275** 
(0.000152) (0.0105) (0.00331) (0.00927) 

T 90-95F 0.00117*** 0.0252** 0.00756* 0.0223** 
(0.000129) (0.00894) (0.00285) (0.00797) 

T 85-90F 0.000595*** 0.0241** 0.00666* 0.0220** 
(0.0000978) (0.00799) (0.00251) (0.00704) 

T 80-85F 0.000272** 0.0167* 0.00337 0.0154* 
(0.0000902) (0.00677) (0.00207) (0.00601) 

N 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 
Injuries Zip/Day (60-65F) 0.00 0.67 0.17 0.57 
Injuries Zip/Year (60-65F) 0.36 245.25 63.19 209.48 
Injuries Sample/Year 743.91 370,612.45 93,384.10 316,935.24 
Injuries Sample/01-18 13,391.21 6,671,056.50 1,680,923.75 5,704,872.00 

Zipcode × Month FE Yes Yes Yes Yes 
County × Month × Year FE Yes Yes Yes No 
Precipitation Yes Yes Yes Yes 

Notes: Table 6 shows the sensitivity of injury claims to temperature for di�erent categories of 
injuries. All coeÿcients are obtained from regressions of inverse hyperbolic sine transformed 
injury counts per zip code and day as the dependent variable. They refect residual variation 
in injuries after regressing on zip code × month and county × year × month fxed e�ects, 
as well as controls for precipitation. Daily maximum temperatures are assigned to a vector 
of 15 temperature bins, ranging from 40�F and below to temperatures greater than 105�F in 
5� increments. Temperature bins below 80�F are suppressed in this table, but included as 
controls in all estimations. The omitted category is the temperature bin with daily maximum 
temperatures between 60 and 65�F. In columns 1 and 3, the dependent variables are the count 
of IHS transformed injury claims oÿcially categorized as being caused by extreme temperature 
and involving core body organs respectively. In columns 2 and 4, injuries are limited to all 
other injuries – by oÿcial cause (2) and body part a�ected (4). Heteroskedasticity robust 
standard errors clustered by county and year-month are noted in parentheses (* p<.10 **p<.05 
***p<.01). 
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Figure 7: Heat Illness and All Other Injuries 

Panel A: Oÿcial Classifcation 

Panel B: A�ected Body Parts 

Notes: Figure 7 depicts the full set of temperature coeÿcients from the regressions presented in table 
6. Panel A plots coeÿcients obtained from regressions of the counts of heat-related injuries according 
to the DWC injury classifcation as the dependent variable (left) and the counts of all other injuries 
as the dependent variable in column 2 (right). All coeÿcients are obtained from regressions of inverse 
hyperbolic sine transformed injury counts per zip code and day as the dependent variable. They refect 
residual variation in injuries after regressing on zip code × month and county × year × month fxed 
e�ects, as well as controls for precipitation. The omitted category is the temperature bin with daily 
maximum temperatures between 60 and 65�F. Heteroskedasticity robust standard errors are clustered 
two-way by county and year-month, and the 95 percent confdence intervals are marked by the dashed 
lines. 
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Figure 8: Labor Market Concentration and Temperature-Injury Relationship 

Notes: Figure 8 plots the temperature-injury relationship by local labor market concentration, using in-
formation on occupation-CZ-level Herfndahl-Hirschman Indices (HHI) from Azar et al. (2020), depicting 
coeÿcients from separate regressions for below and above median values of the national HHI distribution 
(in 2016). The light grey bars indicate injuries in occupation-CZs with above-median HHI’s (measured 
in 2016); the dark grey bars indicate below median. The dependent variable in both cases is the inverse 
hyperbolic sine transformed count of injuries per zip code and day, across all California-based work sites 
over the period 2001-2018. Daily maximum temperatures are assigned to a vector of 15 temperature bins 
ranging from 40�F and below to temperatures greater than 105�F. The omitted category is the temper-
ature bin with daily maximum temperatures between 60 and 65�F. Heteroskedasticity robust standard 
errors are clustered two-way by county and year-month, and 95 percent confdence intervals are denoted 
by whiskers. 
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Figure 9: Cal OSHA Citations for Heat Standard Over Time 

Notes: Figure 9 plots Cal-OSHA citations for violations of the Heat Illness Prevention Standard (HIPS, 
Cal/OSHA subchapter 7, group 2, article 10, section 3395) for all California-based establishments by 
year. 
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Figure 10: Temperatures and Injuries Before and After the Introduction of the Heat Illness Prevention 
Standard 

Notes: Figure 10 shows the e�ect of temperatures on workplace injuries before and after the introduction 
of the Heat Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 
3395). The plotted coeÿcients are obtained from a regression of inverse hyperbolic sine transformed 
injury counts per zip code and day (as specifed in 5) on temperature bins and precipitation controls 
before and after the introduction of the policy. Both regressions include zip code × month, and county 
× year × month fxed e�ects, allowing zip code × month fxed e�ects to vary before and after the 
policy. Estimates for the period after (before) the introduction of the standard are plotted in dark blue 
(light blue). Heteroskedasticity robust standard errors are clustered by county and year-month, and 95 
percent confdence intervals are plotted as dashed lines. The p-values of tests of statistical signifcance 
of the di�erence in the sensitivity of injuries to temperatures before and after the policy are shown in 
parentheses. 
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Table 7: Temperatures and Injuries Before and After the Introduction of the Heat Illness Prevention Standard – Table 
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Pre 
b 
p 

below 40 

-.0023 
.8462 

40-45F 

-.0093 
.4063 

45-50F 

-.0128 
.3376 

50-55F 

-.016 
.1636 

55-60F 

-.0090 
.3451 

65-70F 

-.0011 
.9210 

70-75F 

.0190 

.0841 

75-80F 

.0218 

.0417 

80-85F 

.0277 

.0211 

85-90F 

.0421 

.0050 

90-95F 

.0423 

.0199 

95-100F 

.0587 

.0068 

100-105F 

.0849 

.0001 

above 105F 

.0693 

.0121 

Post 
b 
p 

below 40 

-.0025 
.7812 

40-45F 

-.0095 
.2101 

45-50F 

-.0168 
.0833 

50-55F 

-.0167 
.0393 

55-60F 

-.0094 
.0389 

65-70F 

.0069 

.1270 

70-75F 

.0081 

.1896 

75-80F 

.0108 

.1031 

80-85F 

.0141 

.0889 

85-90F 

.0191 

.0487 

90-95F 

.0218 

.0406 

95-100F 

.0256 

.0344 

100-105F 

.0178 

.2028 

above 105F 

.0142 

.4581 

p Dif (p=1.00) (p=0.99) (p=0.81) (p=0.96) (p=0.97) (p=0.52) (p=0.40) (p=0.38) (p=0.35) (p=0.19) (p=0.32) (p=0.17) (p=0.01) (p=0.10) 

Notes: Table 7 provides point estimates and standard errors from estimating the e�ect of temperature on workplace injuries before and after 
the introduction of the Heat Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 3395). Coeÿcients (b) 
and p-values (p) are obtained from a regression of inverse hyperbolic sine transformed injury counts per zip code and day (as specifed in 5) on 
temperature bins and precipitation controls before and after the introduction of the policy. Both regressions include zip code × month, and 
county × year × month fxed e�ects, while we allow zip code × month fxed e�ects to vary by zip-code before and after the policy. Estimates for 
the period after (before) introduction of the policy are labelled Post (Pre). Heteroskedasticity robust standard errors are clustered by county 
code and year-month, with 95 percent confdence intervals plotted as dashed lines. Heteroskedasticity robust standard errors are clustered by 
county and year-month. The p-values of tests of statistical signifcance of the di�erence in the sensitivity of injuries to temperatures before 
and after the policy are shown in parentheses. 



Figure 11: Change in Heat-Sensitivity of Injury Over Time 

Notes: Figure 11 shows the e�ect of temperatures on workplace injuries before and after the introduction 
of the Heat Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 
3395). The plotted coeÿcients are obtained from a regression of inverse hyperbolic sine transformed 
injury counts per zip code and day (as specifed in 5) on temperature bins and precipitation controls 
for each year of our sample, showing the coeÿcients for days with highs between 95�F and 100�F. All 
regressions include zip code × month, and county × year × month fxed e�ects, while we allow zip code 
× month fxed e�ects to vary by year. Heteroskedasticity robust standard errors are clustered by county 
and year-month, the 95 pecent confdence intervals are plotted as dashed lines. 
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Figure 12: E�ect of Policy on Temperature-Injury Relationship (A�ected Industries) 
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Notes: Figure 12 In all of the above, the dependent variable is the inverse hyperbolic sine transformed count of injuries per zip code and day. 
Daily maximum temperatures are assigned to a vector of 15 temperature bins ranging from 40�F and below to temperatures greater than 
105�F. The omitted category is the temperature bin with daily maximum temperatures between 60 and 65�F. Each panel plots coeÿcients 
obtained from regressions of the inverse hyperbolic sine of injuries on the temperature bins shown for periods before (2001-2005, light blue) 
and after (2006-2010, dark blue) the policy, showing industries where at least one temperature bin appears to show a signifcant di�erence in 
injuries. These include: agriculture (11), construction (23), a subset of manufacturing (32), a subset of wholesale (42), a subset of retail (45), 
and other services (81). Heteroskedasticity robust standard errors are clustered by county and year-month, and 95 percent confdence intervals 
are denoted by box and whisker plots. 



Table 8: Di�erences in Di�erences: Log Wage Level (Pre-Recession Only) 

(1) 
All A�ected 

(2) 
Reg. 

(3) 
Unreg. 

(4) 
All A�ected 

(5) 
Reg. 

(6) 
Unreg. 

CAxPOST 0.031��� 0.024��� 0.021��� 0.031��� 0.024��� 0.021��� 

CAxTREATxPOST 
(0.005) 

-0.040��� 
(0.005) 

-0.037��� 
(0.004) 

-0.025��� 
(0.005) 

-0.040��� 
(0.005) 

-0.038��� 
(0.004) 

-0.026��� 

N 
(0.002) 
871,629 

(0.004) 
871,629 

(0.000) 
871,629 

(0.002) 
851,961 

(0.004) 
851,961 

(0.000) 
851,961 

� Treated -0.009 -0.014 -0.004 -0.009 -0.014 -0.004 
0.004 0.005 0.004 0.004 0.006 0.004 

County FE 
Industry FE 
Industry x Quarter FE 
Quarter x Year FE 
Two-way interactions 
Agriculture 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Notes: Heteroskedasticity robust standard errors clustered by state and year are in parentheses (* p<.10 ** p<.05 
*** p<.01). Coeÿcients in each column come from a regression of log total employment in a given county-industry-
quarter (NAICS 2-digit) on the variables shown, as well as all two-way interactions between a dummy for California, 
Treated industry, and Post-2005 (Q3). �T reated reports the sum of the reported coeÿencts, with standard errors 
calculated using the delta method. The sample is restricted to county-industries for which quarterly employment 
and wage information are available for the entire time period (2000-2017). A�ected industries include agriculture, 
construction, wholesale, transportation and warehousing, retail, real estate and rental/leasing, professional, sci-
entifc and technical services, administrative support and waste management, and other services (except Public 
Administration), and are selected on the basis of industry-specifc analyses of the change in temperature-injury 
relationships pre- and post-2005. Among these, regulated industries include agriculture, construction, wholesale, 
transportation and warehousing, and administrative support and waste management. Columns (4)-(6) omit agri-
culture, based on the observation that QCEW measures agricultural employment relatively poorly, and minimum 
wages may be more likely to bind. 
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Table 9: Di�erences in Di�erences: Log Employment Level (Pre-Recession Only) 

(1) 
All A�ected 

(2) 
Reg. 

(3) 
Unreg. 

(4) 
All A�ected 

(5) 
Reg. 

(6) 
Unreg. 

CAxPOST -0.018�� -0.012� -0.010 -0.018� -0.012 -0.009 

CAxTREATxPOST 
(0.008) 
0.031��� 

(0.006) 
0.028��� 

(0.008) 
0.012 

(0.009) 
0.036��� 

(0.006) 
0.041��� 

(0.008) 
0.010 

N 
(0.003) 
871,629 

(0.003) 
871,629 

(0.012) 
871,629 

(0.000) 
851,961 

(0.003) 
851,961 

(0.013) 
851,961 

� Treated 0.012 0.017 0.001 0.018 0.029 0.001 
0.007 0.008 0.010 0.009 0.009 0.010 

County FE 
Industry FE 
Industry x Quarter FE 
Quarter x Year FE 
Two-way interactions 
Agriculture 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Notes: Heteroskedasticity robust standard errors clustered by state and year are in parentheses (* p<.10 ** p<.05 
*** p<.01). Coeÿcients in each column come from a regression of log total employment in a given county-industry-
quarter (NAICS 2-digit) on the variables shown, as well as all two-way interactions between a dummy for California, 
Treated industry, and Post-2005 (Q3). �T reated reports the sum of the reported coeÿencts, with standard errors 
calculated using the delta method. The sample is restricted to county-industries for which quarterly employment 
and wage information are available for the entire time period (2000-2017). A�ected industries include agriculture, 
construction, wholesale, transportation and warehousing, retail, real estate and rental/leasing, professional, sci-
entifc and technical services, administrative support and waste management, and other services (except Public 
Administration), and are selected on the basis of industry-specifc analyses of the change in temperature-injury 
relationships pre- and post-2005. Among these, regulated industries include agriculture, construction, wholesale, 
transportation and warehousing, and administrative support and waste management. Columns (4)-(6) omit agri-
culture, based on the observation that QCEW measures agricultural employment relatively poorly, and minimum 
wages may be more likely to bind. 
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Table 10: Triple Di�erence CPS Hours 

(1) 
All A�ected 

(2) 
Regulated 

(3) 
Unregulated 

CAxPOST -0.0143 -0.0143� -0.0152� 

CAxTREATxPOST 
(0.0097) 
-0.0039 

(0.0086) 
-0.0069 

(0.0082) 
-0.0028 

(0.0144) (0.0154) (0.0124) 

MSA FE Yes Yes Yes 
Industry FE 
Industry x Quarter FE 
Quarter x Year FE 
Two-way interactions 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 

Notes: Heteroskedasticity robust standard errors clustered by MSA are in parentheses (* p<.10 ** p<.05 *** 
p<.01). Coeÿcients in each column come from a regression of log hours worked in the last week in a MSA-
industry-quarter (NAICS 2-digit) on the variables shown, as well as all two-way interactions between a dummy for 
California, Treated industry, and Post-2005 (Q3). A�ected industries include agriculture, construction, wholesale, 
transportation and warehousing, retail, real estate and rental/leasing, professional, scientifc and technical services, 
administrative support and waste management, and other services (except Public Administration), and are selected 
on the basis of industry-specifc analyses of the change in temperature-injury relationships pre- and post-2005. 
Among these, regulated industries include agriculture, construction, wholesale, transportation and warehousing, 
and administrative support and waste management. 
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A Appendix A: Theory and Data Notes 

Model of Equalizing Di�erences in Workplace Safety 

Here, we build upon the seminal equalizing di�erences model of Rosen (1974) to examine 
the particular case of temperature changes to refect the fact that extreme temperature may 
infuence the level of optimal safety investment mutually agreed to by workers and employers. 
As a benchmark, we will consider the consequences of temperature shocks in settings where 
extreme temperature raises the overall costs – pecuniary or non-pecuniary – of providing a 
given level of safety. 

Setup 

We model decisions by N identical frms producing output Q under perfect competition.35 

L represents labor inputs, and production functions exhibit the usual diminishing returns: 
Q = f(L), fL > 0, fLL < 0. 

Let R(T, S) represent injury risk, where the level of risk depends on both ambient temper-
ature T and frm safety investments S. We assume that @R � 0, and @R � 0, and that the @S @T 
second derivatives in both cases are non-negative; that is, risk is increasing in temperature, 
possibly non-linearly, and the e�ectiveness of safety investments is diminishing in the level of 
investment.36 

Workplace injury risk is a disamenity for workers, but frms must incur a cost to reduce 
it. Unlike in the stylized model above, we model compensating di�erentials and other costs of 
providing safety separately. Let c denote frms’ direct per unit cost of providing an additional 
increment of workplace safety, and w(R(T, S)) the wage that frms must pay, conditional on a 
given level of realized workplace risk. The wage rate is a function of R since, in equilibrium, 
it will depend on the level of compensating di�erential o�ered. Note that we are assuming 
workers have full information regarding the safety risks associated with working in a given 
frm or occupation. In practice, there may be information problems which drive a wedge 
between perceived and actual injury risk. 

Workers face a trade o� between additional consumption from wage income and added 
@U @2Uworkplace safety: U = U(C, R), where UC > 0, UCC < 0, < 0, For simplicity, we @R @R2<0 . 

assume that each of M identical workers provides a unit measure of labor and set unearned 
income to zero, so that C = w(R).37 Note that if workers derive direct utility from more 
pleasant temperature conditions (and fnd extreme temperature to be unpleasant, aside from 
any injury risk), this can be folded into the parameter R. 

Comparative Statics 

Firms choose optimal labor and safety inputs to maximize profts � = pf(L)− w(R(T, S))L− 
csS. Workers choose a wage-safety bundle to maximize utility U = U(w(R), R). For ease of 
exposition, we focus on short-run avoidance behaviors and defensive investments, but the same 
logic applies to long-run investments, including decisions regarding the production technology 
or the location of production and employment. Specifcally, we will consider the impact 
of short-run (e.g. day-to-day) fuctuations in temperature on frms’ short-run production 

35As is standard, we will assume that capital investments are fxed in the short run, and frms are price takers in product 
and labor markets. 

36For simplicity, we will set aside the possibility that temperature directly a�ects labor productivity, separate from its 
e�ects on injury risk. Allowing for additional impacts on productivity does not a�ect the main predictions. 

37Note that in doing so we abstract from extensive and intensive margin labor supply decisions. 
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decisions, assuming that workers have the option to switch frms if they aren’t being paid the 
market-clearing compensating di�erential.38 

The frst order conditions d� = 0, d� = 0, and dU = 0 jointly determine equilibrium L�,dL dS dR 
S� and w�(R�) given parameters, and can be re-arranged to obtain the following equations: 

cs = −wRRSL (10) 

pfL(L) = w(R(T, S)) (11) 

@U 
@R wR = − (12)
UC 

Together, these conditions defne frms’ optimal labor inputs and level of safety investment 
given workers’ preferences, product and input prices, and production parameters. Equation 
10 shows that frms invest in safety to the point where the marginal cost equals the marginal 
beneft, the latter being in terms of reduced compensating di�erentials required to induce 
workers to take on such work.39 Equation 11 shows that perfectly competitive frms will pay 
workers their marginal revenue product.Equation 12 shows that workers demand a bundle 
of wages and risk such that the slope of the compensating di�erential (the relative price of 
safety) equals the ratio of marginal utility of consumption and the marginal utility of safety. 

In equilibrium, utility-maximizing workers and proft-maximizing frms will agree to a 
bundle of wages and safety investments specifc to a given labor market (e.g. the market 
for landscapers with no previous experience).40 Intuitively, we would expect that as the cost 
of safety goes up, frms re-optimize their input mix (L�, S�), and that workers respond to 
new wage-safety o�ers by choosing a new bundle of consumption and safety (w�(R�), 1 − R�), 
provided that wages and employment are suÿciently fexible, if only in expectation. 

Appealing to the implicit function theorem to defne all choice variables as implicit func-
tions of T , we can totally di�erentiate the frst order conditions with respect to T . With a 
bit of algebra, we arrive at the following equation representing the expected change in labor 
inputs as a function of T: 

dL� CSRST = (13)
dT WRR2 

S 

dL�Since CS ,WR and R2 are positive, the sign of depends on the sign of RST , which S dT 
represents the change in the risk-reducing e�ect of safety investment with respect to increased 
temperature. If a given safety investment is more e�ective at more extreme temperatures (RS 

is more negative), this term would be negative, implying that frm labor demand L� decreases 
with extreme temperature. On the other hand, if a given safety investment is less e�ective 
at more extreme temperatures, then we would expect frms’ labor demand to increase with 
extreme temperature. At least for safety investments that are designed to reduce temperature-
related risks in particular, it seems likely that the former holds, implying dL� < 0.dT 

38We will assume that, in equilibrium, frms have invested in the fxed investments necessary to allow for a market-clearing 
�(w , R�) bundle for a given average climate T ̄, such that any changes with respect to short-run weather shocks T are net of 

such longer-term adaptations to a given climate as in Deschênes and Greenstone (2011); Carleton et al. (2018). 
39Note that, since we are assuming frms to be price-takers in both product and labor markets, the wage o�er curve (WR) 

is considered to be exogenous to any individual frm’s decision. 
40Note that this is the outcome of a labor market equilibrium where idential workers and frms agree to one optimal 

wage-risk bundle that is standard across the specifc labor market of interest (w �, R�). One could of course generalize to 
�allow for heterogeneous workers and frms as in Rosen (1974), which would lead to a schedule of (wi,j , R� ) for worker i and i,j 

frm j (i.e. a wage-o�er curve). But given the focus of the model, we assume identical workers and frms for the time being. 
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Similarly, we can express the change in equilibrium injury risk as a function of T as follows: 

dR� pfLL 
dL� 

dT= (14)
dT WR 

Since p and WR are positive and fLL is negative, the above equation implies that the sign 
dR� dL� dL� dR�of depends on the sign of . If is negative, then is positive, implying that dT dT dT dT 

realized injury risk will increase in response to hotter temperature. On the other hand, in 
states of the world where dL� is positive, we might expect the net change in injury risk per dT 
worker to be negative. This refects the fact that, if parameters are such that frms’ optimal 
labor input response to hotter temperature is positive, it must also be the case that, per unit 
of labor input, injury risk is lower. 

Finally, dS� can be expressed as: dT 

dL� pfLL dT − @R 
dS� WR @T = (15)

@R dT 
@S 

Note that the sign of dS� depends on the sign of dL� : namely, optimal safety investment dT dT 
decreases in response to temperature shocks if the optimal labor input response is positive, 
and vice versa. This suggests that, if cost, utility, and productivity parameters are such that 
the frm’s optimal response to increased temperature is to increase labor inputs, it must be 
the case that they do so while reducing overall safety investment per worker. The intuition 
here is that perfectly competitive frms cannot respond to adverse cost shocks by increasing all 
inputs. At the same time, this expression also suggests that frms may, over some parameter 
space, simultaneously reduce labor inputs and reduce safety inputs. 

These expressions illustrate the central intuition that perfectly competitive frms respond 
to adverse cost shocks through some combination of reducing safety investment (dS� > 0)dT 
and/or reducing labor demand (dL� < 0), at least when a set of reasonable conditions aredT 
met. 

Imperfect Information 

Some have suggested that information problems may prevent workers from being fully aware 
of the risks associated with temperature extremes (Viscusi and Moore, 1991). This would 
mean that workers would in general require less compensating di�erentials to take on more 
safety risk, since there would a wedge between real and perceived risks on the job. We can 
model this as a reduction in the dw� and w� terms. This means that, ceteris paribus, frmsdT 
are more likely to reduce safety investment in response to extreme temperature, since lower 
overall labor costs and lower compensating di�erentials make it less likely that frms respond 
by reducing labor demand. 
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Alternative Explanations 

Endogenous Incident Reporting 

It is also possible that, for any given level of underlying injury risk, the realized level of 
reporting may be endogenous to temperature. Ex ante, it is unclear in which direction the 
resulting bias would go. For instance, it may be more likely that workers report injuries on 
very hot days, especially if they believe that they have the backing of legal mandates. This 
bias may vary with the level of salience of any given temperature event. Suppose frms engage 
in some trade o� between reputation risk associated with higher workplace accident rates 
(from reporting an injury) and the risk of being fned by OSHA (from failing to report an 
injury that has occurred).41 In this case, the relative e�ect of temperatures at the higher 
end of the distribution may be biased upwards due to this reporting e�ect, but the absolute 
magnitude of all temperature coeÿcients would under-represent the true increase in injury 
risk. 

Alternatively, workers and employers may be less likely to report on hot days if they are 
more fatigued or less likely to be interacting with each other to begin with. There is some 
evidence that the functioning of institutions can be sensitive to temperature (e.g. police 
arrests, judge decisions, as in Obradovich et al. (2018)), and that the e�ort levels of surveyors 
is also temperature-dependent (LoPalo, 2019). In this case, our estimates would likely under-
state the increase in risk associated with extreme temperature. 

It is likely diÿcult to control for these possibilities directly in this setting. We neverthe-
less attempt to further explore robustness to potential endogenous reporting by leveraging 
information on reported cause of injury below. 

41It seems plausible that the latter risk is elevated in the vicinity of an extreme heat event (e.g. 100�F) relative to a less 
uncommon heat event (e.g. 85�F), since risks associated with extreme heat events are often publicized by the media and 
local public health oÿcials, and since OSHA agencies often engage in targeted inspections. 

68 



B Additional Tables, Figures, and Robustness Tests 
Figure B1: Injuries and Temperatures Over Time Figure B2: Distribution of Temperatures in California 
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Notes: Figure B1 shows the number of days with temperatures over 
90�F over time. The upper panel shows trends in the frst, third, and 
ffth quintiles of the average temperature distribution within California. 
The lower panel shows similar trends over time, but grouping locations 
by quintile of the average realized warming distribution (2001-2003 to 
2016-2018). 

Notes: Figure B2 shows the distribution of daily maximum tempera-
tures for all zip code days from 2001 to 2018 in California (upper panel) 
as well as on days on which injuries occur (lower panel). The vertical 
lines mark the 1st and 99th percentiles of the temperature distributions 
respectively. 



Table B1: Distribution of Injuries 

Notes: Table B1 provides information on the number of injury claims in California by body part (panel 
A) and injury description (panel B) over the period 2000 to 2018. 

Panel A: Details on the Injury – A�ected Body Part 
N Percent Sum 

No Information 4,911,029 44% 44% 
Low Back Area 1,315,420 12% 56% 
Multiple Body Parts 1,176,573 11% 66% 
Finger 950,806 9% 75% 
Hand 661,532 6% 81% 
Shoulder 579,700 5% 86% 
Eye 409,725 4% 90% 
Upper Back Area 189,197 2% 91% 
Abdomen incl. Groin 168,629 2% 93% 
Upper Arm 147,520 1% 94% 
Chest 143,982 1% 96% 
Wrist 105,305 1% 97% 
Lumbar and/or Sacral Vertebrae 77,809 1% 97% 
Toe 70,158 1% 98% 
Internal Organs 54,557 0% 98% 
Disc 53,723 0% 99% 
Ear 45,802 0% 99% 
Facial Bones 43,938 0% 100% 
Mouth 30,554 0% 100% 
Spinal Cord 10,953 0% 100% 
Total 11,146,912 100% 100% 

Panel B: Description of the Injury 
N Percent Sum 

Strain or Tear 3,377,724 30% 30% 
Contusion 1,235,237 11% 41% 
Laceration 1,187,723 11% 52% 
Sprain or Tear 1,077,774 10% 62% 
All Other Specifc Injuries, NOC 950,443 9% 70% 
All Other Cumulative Injuries 547,983 5% 75% 
Puncture 364,373 3% 78% 
Multiple Physical Injuries Only 314,734 3% 81% 
Infammation 304,112 3% 84% 
Fracture 285,617 3% 87% 
Foreign Body 260,527 2% 89% 
Burn 169,258 2% 90% 
Mental Stress 160,116 1% 92% 
Crushing 97,190 1% 93% 
Carpal Tunnel Syndrome 89,245 1% 93% 
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No Physical Injury 
Dermatitis 
Hernia 
Dislocation 
Multiple Injuries Including Both Physical and Psychological 
All Other Occupational Disease Injury, NOC 
Infection 
Contagious Diseases 
Respiratory Disorders (Gases, Fumes, Chemicals, etc.) 
Concussion 
Myocardial Infarction (Heart Attack) 
Mental Disorder 
No Information 
Syncope 
Amputation 
Rupture 
Hearing Loss or Impairment 
Heat Prostration 
Poisoning-Chemical (Other than Metals) 
Electric Shock 
Loss of Hearing 
Poisoning-General (Not OD or Cumulative Injury) 
Cancer 
Vascular 
Asbestosis 
Angina Pectoris 
Severance 
Vision Loss 
Dust Disease, NOC (All other Pneumoconiosis) 
VDT-Related Diseases 
Asphyxiation 
Freezing 
AIDS 
Poisoning-Metal 
Enucleation 
Radiation 
Black Lung 
Hepatitis C 
Silicosis 
Byssinosis 
Total 

80,005 1% 94% 
72,469 1% 95% 
63,792 1% 95% 
51,056 0% 96% 
45,856 0% 96% 
43,507 0% 97% 
43,432 0% 97% 
39,239 0% 97% 
37,012 0% 98% 
31,791 0% 98% 
23,751 0% 98% 
20,555 0% 98% 
19,683 0% 99% 
18,556 0% 99% 
14,022 0% 99% 
13,641 0% 99% 
11,326 0% 99% 
11,097 0% 99% 
10,290 0% 99% 
9,803 0% 99% 
8,499 0% 100% 
8,484 0% 100% 
7,342 0% 100% 
6,133 0% 100% 
6,050 0% 100% 
5,075 0% 100% 
5,067 0% 100% 
4,821 0% 100% 
3,385 0% 100% 
2,602 0% 100% 
1,656 0% 100% 
1,259 0% 100% 
1,019 0% 100% 
623 0% 100% 
586 0% 100% 
535 0% 100% 
297 0% 100% 
287 0% 100% 
194 0% 100% 
59 0% 100% 

11,146,912 100% 100% 
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Table B4: Temperatures and Injuries – OLS 

(1) (2) (3) (4) (5) 
OLS OLS OLS OLS OLS 

T above 105F -0.00742 0.0458 0.0458 0.0362 0.0514 
(0.0300) (0.0325) (0.0325) (0.0337) (0.0342) 

T 100-105F 0.0630** 0.0803** 0.0803** 0.0692** 0.0821** 
(0.0222) (0.0239) (0.0239) (0.0251) (0.0257) 

T 95-100F 0.0667** 0.0758*** 0.0758*** 0.0651** 0.0742** 
(0.0193) (0.0209) (0.0209) (0.0221) (0.0230) 

T 90-95F 0.0469** 0.0569** 0.0568** 0.0488* 0.0561** 
(0.0165) (0.0186) (0.0186) (0.0195) (0.0198) 

T 85-90F 0.0456** 0.0556** 0.0556** 0.0492** 0.0549** 
(0.0155) (0.0169) (0.0169) (0.0176) (0.0174) 

T 80-85F 0.0313* 0.0376** 0.0376** 0.0312* 0.0358* 
(0.0126) (0.0140) (0.0140) (0.0145) (0.0145) 

N 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 
Injuries Zip/Day (60-65F) 1.20 1.20 1.20 1.20 1.20 
Injuries Zip/Year (60-65F) 439.69 439.69 439.69 439.69 439.69 
Injuries Sample/Year 652,245.57 652,245.57 652,245.57 652,245.57 652,245.57 
Injuries Sample/01-18 11,740,558.00 11,740,558.00 11,740,558.00 11,740,558.00 11,740,558.00 

Zip Code FE Yes No No No No 
Month FE Yes No No No No 
Year FE Yes Yes Yes No No 
Zipcode × Month FE No Yes Yes Yes Yes 
Precipitation No No Yes Yes Yes 
Month × Year FE No No No Yes No 
County × Month × Year FE No No No No Yes 

Notes: Table B4 shows the e�ect of temperature on injury claims for California-based work 
sites over the period 2001 to 2018. All coeÿcients are obtained from regressions of injury 
counts per zip code and day on indicator variables representing each of 15 temperature bins, 
as well as controls for precipitation and the fxed e�ects noted above. The results of the 
main specifcation corresponding to equation 5 are shown in column 5. Daily maximum tem-
peratures are assigned to a vector of 15 temperature bins, ranging from 40�F and below to 
temperatures greater than 105�F in 5� increments. Temperature bins below 80�F are sup-
pressed in this table, but included as controls in all estimations. The omitted category is the 
temperature bin with daily maximum temperatures between 60 and 65�F. Heteroskedasticity 
robust standard errors are clustered by county and year-month and presented in parentheses 
(* p<.10 **p<.05 ***p<.01). 
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Table B5: Temperatures and Injuries – All Temperature Bins 

(1) (2) (3) (4) (5) 
IHS IHS IHS IHS IHS 

T above 105F 0.00497 0.0249 0.0249 0.0220 0.0245 
(0.0126) (0.0150) (0.0150) (0.0156) (0.0161) 

T 100-105F 0.0317*** 0.0360** 0.0360** 0.0325** 0.0344** 
(0.00911) (0.0105) (0.0105) (0.0111) (0.0115) 

T 95-100F 0.0342*** 0.0352*** 0.0352*** 0.0315** 0.0327** 
(0.00821) (0.00938) (0.00938) (0.00993) (0.0105) 

T 90-95F 0.0259*** 0.0277** 0.0277** 0.0250** 0.0257** 
(0.00679) (0.00815) (0.00815) (0.00858) (0.00894) 

T 85-90F 0.0238*** 0.0262*** 0.0262*** 0.0242** 0.0243** 
(0.00667) (0.00747) (0.00747) (0.00778) (0.00800) 

T 80-85F 0.0178** 0.0192** 0.0192** 0.0169* 0.0168* 
(0.00551) (0.00621) (0.00621) (0.00649) (0.00678) 

T 75-80F 0.0139** 0.0144** 0.0144** 0.0129* 0.0130* 
(0.00463) (0.00503) (0.00503) (0.00530) (0.00554) 

T 70-75F 0.0116* 0.0111* 0.0111* 0.0105* 0.0109* 
(0.00468) (0.00488) (0.00488) (0.00511) (0.00525) 

T 65-70F 0.00415 0.00400 0.00400 0.00434 0.00491 
(0.00389) (0.00395) (0.00395) (0.00401) (0.00404) 

T 55-60F -0.00520 -0.00780 -0.00780 -0.00714 -0.00930* 
(0.00373) (0.00412) (0.00412) (0.00432) (0.00440) 

T 50-55F -0.00288 -0.0129* -0.0129* -0.0135* -0.0167* 
(0.00656) (0.00633) (0.00633) (0.00660) (0.00676) 

T 45-50F 0.0129 -0.0109 -0.0109 -0.0132 -0.0159* 
(0.00862) (0.00771) (0.00771) (0.00761) (0.00784) 

T 40-45F 0.0294*** -0.00624 -0.00624 -0.00713 -0.0101 
(0.00822) (0.00631) (0.00631) (0.00650) (0.00660) 

T below 40F 0.0595*** 0.00151 0.00151 -0.000501 -0.00342 
(0.0113) (0.00792) (0.00792) (0.00823) (0.00776) 

N 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 
Injuries Zip/Day (60-65F) 0.67 0.67 0.67 0.67 0.67 
Injuries Zip/Year (60-65F) 245.40 245.40 245.40 245.40 245.40 
Injuries Sample/Year 38,113.66 38,113.66 38,113.66 38,113.66 38,113.66 
Injuries Sample/01-18 675,410.38 675,410.38 675,410.38 675,410.38 675,410.38 

Zip Code FE Yes No No No No 
Month FE Yes No No No No 
Year FE Yes Yes Yes No No 
Zipcode × Month FE No Yes Yes Yes Yes 
Precipitation No No Yes Yes Yes 
Month × Year FE No No No Yes No 
County × Month × Year FE No No No No Yes 

Notes: Table B5 shows the e�ect of temperature on injury claims for California-based work 
sites (2001 to 2018). It di�ers from Table 2 in that listing the estimated coeÿcients for all 
temperature bins. All coeÿcients are obtained from regressions of inverse hyperbolic sine 
transformed injury counts per zip code and day on indicator variables representing each of 15 
temperature bins, as well as controls for precipitation and the fxed e�ects noted above. The 
results of the main specifcation corresponding to equation 5 are shown in column 5. Daily 
maximum temperatures are assigned to a vector of 15 temperature bins, ranging from 40�F 
and below to temperatures greater than 105�F in 5� increments. The omitted category is the 
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temperature bin with daily maximum temperatures between 60 and 65�F. Heteroskedasticity 
robust standard errors are clustered by county and year-month and presented in parentheses 
(* p<.10 **p<.05 ***p<.01). 
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Figure B3: Temperature and Injuries – Injuries per Worker 

Notes: Figure B3 plots the coeÿcients obtained from regressions specifed in equation 5, with 
point estimates shown in Table 2, column 5, but where the dependent variable is the inverse 
hyperbolic sine transformed injury count per zip code and day divided by the number of 
workers in that zip code-quarter, where we assign employment by county. All coeÿcients 
are obtained from regressions of inverse hyperbolic sine transformed injury counts per zip 
code and day as the dependent variable. They refect residual variation in injuries after 
regressing on zip code × month and county × year × month fxed e ects, as well as controls 
for precipitation. Daily maximum temperatures are assigned to a vector of 15 temperature 
bins, ranging from 40�F and below to temperatures greater than 105�F in 5� increments. The 
omitted category is the temperature bin with daily maximum temperatures between 60 and 
65�F. Heteroskedasticity robust standard errors are clustered by county and year-month, and 
95 percent confdence intervals are denoted by dashed lines. 
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Table B6: Temperatures and Injuries - Alternative Fixed E�ect Specifcations 

(1) (2) (3) (4) (5) (6) (7) 
OLS OLS OLS OLS OLS OLS OLS 

T above 105F 0.0220 0.0242 0.00196 0.0116 0.0311�� 0.00711 0.0174 
(0.0156) (0.0192) (0.0130) (0.0149) (0.00916) (0.0100) (0.00943) 

T 100-105F 0.0325�� 0.0338� 0.0283�� 0.0312�� 0.0344��� 0.0289��� 0.0316��� 

(0.0111) (0.0139) (0.00942) (0.0102) (0.00618) (0.00745) (0.00616) 
T 95-100F 0.0315�� 0.0321� 0.0307��� 0.0324�� 0.0296��� 0.0284��� 0.0298��� 

(0.00993) (0.0127) (0.00858) (0.00953) (0.00477) (0.00572) (0.00494) 
T 90-95F 0.0250�� 0.0253� 0.0233�� 0.0256�� 0.0252��� 0.0234��� 0.0255��� 

(0.00858) (0.0112) (0.00706) (0.00812) (0.00409) (0.00437) (0.00425) 
T 85-90F 0.0242�� 0.0244� 0.0217�� 0.0239�� 0.0251��� 0.0225��� 0.0247��� 

(0.00778) (0.0104) (0.00686) (0.00748) (0.00376) (0.00399) (0.00380) 
T 80-85F 0.0169� 0.0170� 0.0152�� 0.0168� 0.0184��� 0.0167��� 0.0183��� 

(0.00649) (0.00782) (0.00565) (0.00636) (0.00327) (0.00340) (0.00327) 
N 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 
Zip Code FE No No Yes Yes No Yes Yes 
Month FE No No Yes Yes No Yes Yes 
Zipcode × Month FE No No Yes Yes Yes Yes No 
Month × Year FE Yes Yes Yes No No Yes No 
County Linear Trends No No Yes No Yes No No 
County × Month × Year FE No No No Yes No No Yes 
Precipitation Yes Yes Yes Yes Yes Yes Yes 
Day of the Week FE No No No No Yes Yes Yes 

Notes: Table B6 shows the e�ect of temperatures on injury counts in California from 2001 to 2018, and shows alternative fxed e�ect 
specifcations not included in Table 2. The dependent variables in each regression is the IHS transformation of injuries by zip code-day. Daily 
maximum temperatures are assigned to a vector of 15 temperature bins, ranging from 40�F and below to temperatures greater than 105�F in 
5� increments. Temperature bins below 80�F are suppressed in this table, but included as controls in all estimations. The omitted category 
is the temperature bin with daily maximum temperatures between 60 and 65�F. Heteroskedasticity robust standard errors are clustered by 
county and year-month and depicted in parentheses (* p<.10 **p<.05 ***p<.01). 
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Table B7: Temperatures and Injuries - Alternative Clustering of Standard Errors 

(1) (2) (3) (4) (5) (6) 
OLS OLS OLS OLS OLS OLS 

T above 105F 0.0245 0.0245 0.0245 0.0245 0.0245��� 0.0245��� 

(0.0161) (0.0118) (0.0172) (0.0127) (0.00308) (0.00450) 
T 100-105F 0.0344�� 0.0344�� 0.0344�� 0.0344�� 0.0344��� 0.0344��� 

(0.0115) (0.0107) (0.0121) (0.0110) (0.00191) (0.00365) 
T 95-100F 0.0327�� 0.0327�� 0.0327�� 0.0327�� 0.0327��� 0.0327��� 

(0.0105) (0.0101) (0.0108) (0.0101) (0.00150) (0.00357) 
T 90-95F 0.0257�� 0.0257�� 0.0257�� 0.0257� 0.0257��� 0.0257��� 

(0.00894) (0.00849) (0.00950) (0.00900) (0.00125) (0.00230) 
T 85-90F 0.0243�� 0.0243�� 0.0243�� 0.0243�� 0.0243��� 0.0243��� 

(0.00800) (0.00732) (0.00856) (0.00794) (0.00115) (0.00190) 
T 80-85F 0.0168� 0.0168� 0.0168� 0.0168� 0.0168��� 0.0168��� 

(0.00678) (0.00621) (0.00716) (0.00656) (0.00102) (0.00211) 
N 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 11,596,536.00 
Zip Code FE Yes Yes Yes Yes Yes Yes 
Month FE Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes 
Zipcode × Month FE Yes Yes Yes Yes Yes Yes 
Precipitation Yes Yes Yes Yes Yes Yes 
Month × Year FE Yes Yes Yes Yes Yes Yes 
County × Month × Year FE Yes Yes Yes Yes Yes Yes 

SE County Cluster Yes Yes No No No Yes 
SE Zip Code Cluster No No Yes Yes Yes No 
SE Year-Month Cluster Yes No Yes No No No 
SE Year Cluster No Yes No Yes No No 

Notes: This table probes the robustness of the main e�ect of temperature on injuries to alternative clustering of standard errors. The 
dependent variables in each regression is the IHS transformation of injuries by zip code-day. Daily maximum temperatures are assigned 
to a vector of 15 temperature bins, ranging from 40�F and below to temperatures greater than 105�F in 5� increments. Temperature bins 
below 80�F are suppressed in this table, but included as controls in all estimations. The omitted category is the temperature bin with daily 
maximum temperatures between 60 and 65�F. Heteroskedasticity robust standard errors are clustered by county and year-month and depicted 
in parentheses (* p<.10 **p<.05 ***p<.01). 



Figure B4: Temperatures and Injuries - Lags and Leads 
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Notes: Figure B4 plots coeÿcients from a dynamic distributed lags variant of equation 5, with three leads and lags of daily maximum 
temperatures. The dependent variable in each regression is the IHS transform of injury counts per zip code and day. Each regression includes 
the full set of 15 temperature bins, ranging from below 40�F to above 105�F, as well as controls for precipitation, zip code × month and county 
× year × month fxed e�ects. We plot lead-lag dynamics for the three hottest temperature bins. The omitted category is days with maximum 
temperatures between 60 and 65�F. The unit of analysis is zip code-days. Heteroskedasticity robust standard errors are clustered by county 
and year-month and 95 percent confdence intervals plotted as dashed lines. 



Figure B5: Temperatures and Injuries - Rolling Window Estimations 

Panel A: 3-Day Rolling Window 

p(Di�.) All RW(3) All 
T above 105F 0.00 0.0243 0.0453* 

(0.0161) (0.0176) 
T 100-105F 0.00 0.0342** 0.0463*** 

(0.0115) (0.0122) 
T 95-100F 0.00 0.0325** 0.0442*** 

(0.0105) (0.0107) 
T 90-95F 0.00 0.0256** 0.0359*** 

(0.00893) (0.00935) 
T 85-90F 0.00 0.0242** 0.0342*** 

(0.00799) (0.00818) 
T 80-85F 0.01 0.0166* 0.0246*** 

(0.00676) (0.00705) 
N 11,593,008.00 11,593,008.00 
Zipcode × Month FE Yes Yes 
County × Month × Year FE Yes Yes 
Precipitation Yes Yes 

Panel B: 5-Day Rolling Window 

p(Di�.) All RW(5) All 
T above 105F 0.04 0.0241 0.0513*** 

(0.0161) (0.0139) 
T 100-105F 0.05 0.0340** 0.0455*** 

(0.0115) (0.00837) 
T 95-100F 0.05 0.0323** 0.0418*** 

(0.0104) (0.00697) 
T 90-95F 0.17 0.0254** 0.0370*** 

(0.00892) (0.00612) 
T 85-90F 0.15 0.0240** 0.0348*** 

(0.00799) (0.00560) 
T 80-85F 0.04 0.0164* 0.0264*** 

(0.00674) (0.00488) 
N 11,589,480.00 11,589,480.00 
Zipcode × Month FE Yes Yes 
County × Month × Year FE Yes Yes 
Precipitation Yes Yes 

Notes: Panel A and B of Table B5 show the e�ect of temperature on injury counts in California (2001-
2018), and di�ers from the results shown in Table 2 in that injury counts as the dependent variable are 
summed over a rolling window of 3 (5) days in Panel A (Panel B). Daily maximum temperatures are 
assigned to a vector of 15 temperature bins, ranging from 40�F and below to temperatures greater than 
105�F in 5� increments. Temperature bins below 80�F are suppressed in this table, but included as controls 
in all estimations. The omitted category is the temperature bin with daily maximum temperatures 
between 60 and 65�F. Heteroskedasticity robust standard errors are clustered by county and year-month 
and depicted in parentheses (* p<.10 **p<.05 ***p<.01). The frst column shows the p-statistic obtained 
by testing the di�erence between coeÿcients from regressions on daily injury counts (column 2) and rolling 
window injury counts (column 3). 
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Table B8: Extreme Temperature and (100x) Log Employment - By Industry 

(1) (2) (3) (4) (5) (6) 
Agr Min Uti Con Man Tra 

Days above 100 (�F) -0.057 -0.002 -0.015 0.154��� 0.060� 0.046 
(0.109) (0.107) (0.020) (0.048) (0.031) (0.032) 

Days in 90s (�F) 0.007 -0.084 -0.021 0.047 0.026 0.000 
(0.082) (0.058) (0.029) (0.048) (0.025) (0.026) 

Days in 80s (�F) 0.040 -0.021 -0.019 0.038 0.026 -0.021 
(0.080) (0.030) (0.017) (0.031) (0.021) (0.026) 

Days below 30 (�F) -0.049 -0.325��� -0.018 -0.456��� 0.020 -0.077� 
(0.106) (0.105) (0.037) (0.075) (0.032) (0.044) 

Average monthly precip -14.115�� -17.503��� -2.741 -7.273�� -3.023 -5.355��� 
(6.585) (6.468) (1.845) (3.286) (1.919) (1.609) 

N 41,544 32,328 34,848 153,072 171,288 66,672 

County FE’s Yes Yes Yes Yes Yes Yes 
Quarter FE’s Yes Yes Yes Yes Yes Yes 
Year FE’s Yes Yes Yes Yes Yes Yes 
County-Industry FE’s Yes Yes Yes Yes Yes Yes 
Industry-Year FE’s Yes Yes Yes Yes Yes Yes 
Regional trends Yes Yes Yes Yes Yes Yes 

Notes: Heteroskedasticity robust standard errors clustered by state and quarter-year are in parentheses (* p<.10 ** 
p<.05 *** p<.01). Coeÿcients in each column and panel come from a regression of 100 times log total employment 
in a given county-industry-quarter on the variables shown, limiting the analysis to the industries listed. The sample 
is restricted to county-industries for which quarterly employment information is available for the entire time period 
(2000-2017). Temperature denotes daily maximum temperature and daily total precipitation is measured in inches. 
All regressions include controls for snow, as well as days in 30’s, 40’s, and 50’s with days in the 60’s and 70’s as the 
omitted category. 
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Table B9: Extreme Temperature and (100x) Log Employment - By Industry 

(1) (2) (3) (4) (5) (6) 
Who Ret Fin Edu Hea Acc 

Days above 100 (�F) 0.030 0.031�� 0.038��� -0.037 0.016 -0.114�� 
(0.040) (0.014) (0.009) (0.058) (0.018) (0.046) 

Days in 90s (�F) 0.037 0.017 0.005 0.019 0.011 -0.103��� 
(0.024) (0.014) (0.013) (0.036) (0.014) (0.032) 

Days in 80s (�F) 0.003 -0.001 0.005 -0.006 -0.004 -0.090�� 
(0.016) (0.011) (0.006) (0.034) (0.010) (0.035) 

Days below 30 (�F) -0.072� -0.022 0.013 -0.002 -0.024�� -0.068� 
(0.036) (0.019) (0.013) (0.036) (0.011) (0.036) 

Average monthly precip 0.002 -1.169 -0.435 1.518 -0.619 -5.776��� 
(2.361) (0.976) (0.721) (2.635) (1.063) (1.915) 

N 108,864 210,384 145,296 57,384 72,360 108,288 

County FE’s Yes Yes Yes Yes Yes Yes 
Quarter FE’s Yes Yes Yes Yes Yes Yes 
Year FE’s Yes Yes Yes Yes Yes Yes 
County-Industry FE’s Yes Yes Yes Yes Yes Yes 
Industry-Year FE’s Yes Yes Yes Yes Yes Yes 
Regional trends Yes Yes Yes Yes Yes Yes 

Notes: Heteroskedasticity robust standard errors clustered by state and quarter-year are in parentheses (* p<.10 ** 
p<.05 *** p<.01). Coeÿcients in each column and panel come from a regression of 100 times log total employment 
in a given county-industry-quarter on the variables shown, limiting the analysis to the industries listed. The sample 
is restricted to county-industries for which quarterly employment information is available for the entire time period 
(2000-2017). Temperature denotes daily maximum temperature and daily total precipitation is measured in inches. 
All regressions include controls for snow, as well as days in 30’s, 40’s, and 50’s with days in the 60’s and 70’s as the 
omitted category. 
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Figure B6: Labor Market Concentration and Temperature-Injury Relationship (Terciles) 

Notes: Figure B6 plots the temperature-injury relationship by local labor market concentration, using 
information on occupation-CZ-level Herfndahl-Hirschman Indices (HHI) from Azar et al. (2020), and 
depicting coeÿcients from separate regressions for each tercile of the national HHI distribution (in 2016). 
The dependent variable in both cases is the inverse hyperbolic sine transformed count of injuries per 
zip code and day, across all California-based work sites over the period 2001-2018. Daily maximum 
temperatures are assigned to a vector of 15 temperature bins ranging from 40�F and below to temperatures 
greater than 105�F. The omitted category is the temperature bin with daily maximum temperatures 
between 60 and 65�F. Heteroskedasticity robust standard errors are clustered two-way by county and 
year-month, and 95 percent confdence intervals are denoted by whiskers. 
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Figure B7: Enforcement of Workplace Safety Mandate - OSHA 

Notes: Figure B7 maps a total of approx. 18,000 violations of the heat illness prevention standards (HIP, Cal/OSHA subchapter 7, group 2, 
article 10, section 3395) revealed through OSHA inspections of approx. 12,000 establishments in California from 2006 to 2018 (with increasing 
enforcement frequencies from 2006 to 2013 shown here). The standard was frst fled on August 8th 2005 as an emergency legislation, which 
means that the policy could be implemented within 17 days and was initially e�ective for 180 days. After two re-adoption periods, the HIP 
was permanently implemented on July 7, 2006. 

Year = 2006 Year = 2007 Year = 2008 Year = 2009 
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Year = 2010 Year = 2011 Year = 2012 Year = 2013 
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Figure B8: Temperatures and Injuries Before and After the Introduction of the Heat Illness Prevention Standard – Robustness Tests 
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Notes: Figure B8 shows placebo tests of the e�ect of temperatures on workplace injuries using two di�erent placebo treatments. ON the left we 
split the period prior to the introduction of the Heat Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 
3395) into a placebo pre and post period and compare e�ects. On the right we do the same with the post-period. In both cases we compare 
temperature-injury coeÿcients from running equation 5 in each placebo period. The plotted coeÿcients are obtained from a regression of 
inverse hyperbolic sine transformed injury counts per zip code and day (as specifed in 5) on temperature bins and precipitation controls before 
and after the introduction of the policy. Regressions include zip code × month, and county × year × month fxed e�ects, while we allow zip 
code × month fxed e�ects to vary by zip-code before and after the policy. The estimates for the period after (before) the introduction of the 
standard are plotted in dark blue (light blue). Heteroskedasticity robust standard errors are clustered by county code and year-month, with 
95 percent confdence intervals plotted as dashed lines. P-values from tests of the statistical signifcance of the di�erence in the sensitivity of 
injuries to temperatures before and after the policy implementation are shown in parentheses. 



Figure B9: Temperatures and Injuries Before and After the Introduction of the Heat Illness Prevention Standard – Robustness Tests 
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Notes: Figure 11 shows two robustness tests of the e�ect of temperatures on workplace injuries before and after the introduction of the Heat 
Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 3395). In the frst robustness test, we limit pre- and 
post-policy periods to equal lengths of fve years (left). In the second test, we exclude the year (2006) in which the policy was adopted as a 
permanent statute (right). The plotted coeÿcients are obtained from a regression of inverse hyperbolic sine transformed injury counts per zip 
code and day (as specifed in 5) on temperature bins and precipitation controls before and after the introduction of the policy. Regressions 
include zip code × month, and county × year × month fxed e�ects, while we allow zip code × month fxed e�ects to vary by zip-code 
before and after the policy. The estimates for the period after (before) the introduction of the standard are plotted in dark blue (light blue). 
Heteroskedasticity robust standard errors are clustered by county code and year-month, with 95 percent confdence intervals plotted as dashed 
lines. P-values from tests of the statistical signifcance of the di�erence in the sensitivity of injuries to temperatures before and after the policy 
implementation are shown in parentheses. 



Figure B10: Change in Heat-Sensitivity of Injury Over Time 

Notes: Figure B10 shows the e�ect of temperatures on workplace injuries before and after the introduction 
of the Heat Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 
3395). The plotted coeÿcients are obtained from a regression of inverse hyperbolic sine transformed 
injury counts per zip code and day (as specifed in 5) on temperature bins and precipitation controls 
for each year of our sample, showing the coeÿcients for days with highs between 90�F and 95�F. All 
regressions include zip code × month, and county × year × month fxed e�ects, while we allow zip code 
× month fxed e�ects to vary by zip-code before and after the policy. Heteroskedasticity robust standard 
errors are clustered by county and year-month, with 95 percent confdence intervals plotted as dashed 
lines. 

87 



Figure B11: Change in Heat-Sensitivity of Injury Over Time 

Notes: Figure B11 shows the e�ect of temperatures on workplace injuries before and after the introduction 
of the Heat Illness Prevention Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 
3395). The plotted coeÿcients are obtained from a regression of inverse hyperbolic sine transformed 
injury counts per zip code and day (as specifed in 5) on temperature bins and precipitation controls 
for each year of our sample, showing the coeÿcients for days with highs between 100�F and 105�F. All 
regressions include zip code × month, and county × year × month fxed e�ects, while we allow zip code 
× month fxed e�ects to vary by zip-code before and after the policy. Heteroskedasticity robust standard 
errors are clustered by county and year-month, with 95 percent confdence intervals plotted as dashed 
lines. 
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Figure B12: Change in Heat-Sensitivity of Injury Over Time – By Climate Tercile 
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Notes: Figure B12 shows the e�ect of temperatures on workplace injuries before and after the introduction of the Heat Illness Prevention 
Standard (HIPS, Cal/OSHA subchapter 7, group 2, article 10, section 3395), by tercile of the California climate distribution, where climate 
is measured in terms of the average number of days anove 95�F per year over the study period. The plotted coeÿcients are obtained from a 
regression of inverse hyperbolic sine transformed injury counts per zip code and day (as specifed in 5) on temperature bins and precipitation 
controls for each year of our sample. All regressions include zip code × month, and county × year × month fxed e�ects, while we allow zip 
code × month fxed e�ects to vary by zip-code before and after the policy. Heteroskedasticity robust standard errors are clustered by county 
and year-month, with 95 percent confdence intervals plotted as dashed lines. P-values from tests of the statistical signifcance of the di�erence 
in the sensitivity of injuries to temperatures before and after the policy implementation are shown in parentheses. 



Figure B13: Trends in QCEW Wages by Treated Industries 
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Notes: Figure B13 shows the event study of the HIPS policy implementation on log QCEW wage levels in California and non-California 
counties by Treated and non-Treated industries with a linear year trend removed . The impacted in Treated industries is shown in the left 
panel while non-Treated industries are shown in the right panel. Coeÿcients are estimated relative to employment levels in the year prior to 
the implementation of the policy. Regressions include county and industry by quarter fxed e�ects. Standard errors are clustered at the county 
level and shown in light grey bars. 



Figure B14: Trends in QCEW Employment by Treated Industries 

91 

Notes: Figure B14 shows the event study of the HIPS policy implementation on log QCEW employment levels in California and non-California 
counties by Treated and non-Treated industries. The impacted in Treated industries is shown in the left panel while non-Treated industries 
are shown in the right panel. Coeÿcients are estimated relative to employment levels in the year prior to the implementation of the policy. 
Regressions include county and industry by quarter fxed e�ects. Standard errors are clustered at the county level and shown in light grey bars. 



Table B10: Di�erences in Di�erences: Log Wages per Worker 

(1) 
All A�ected 

(2) 
Reg. 

(3) 
Unreg. 

(4) 
All A�ected 

(5) 
Reg. 

(6) 
Unreg. 

CAxPOST 0.020�� 0.014�� 0.013� 0.020�� 0.014�� 0.014�� 

CAxTREATxPOST 
(0.007) 

-0.027��� 
(0.006) 

-0.021��� 
(0.007) 

-0.022��� 
(0.007) 

-0.027��� 
(0.006) 

-0.020��� 
(0.007) 

-0.023��� 

N 
(0.004) 

1,901,736 
(0.006) 

1,901,736 
(0.002) 

1,901,736 
(0.004) 

1,858,824 
(0.007) 

1,858,824 
(0.001) 

1,858,824 

� Treated -0.007 -0.007 -0.009 -0.007 -0.006 -0.009 
0.008 0.010 0.007 0.008 0.012 0.007 

County FE 
Industry FE 
Industry x Quarter FE 
Quarter x Year FE 
Two-way interactions 
Agriculture 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Notes: Heteroskedasticity robust standard errors clustered by state and year are in parentheses (* p<.10 ** p<.05 
*** p<.01). Coeÿcients in each column come from a regression of log total employment in a given county-industry-
quarter (NAICS 2-digit) on the variables shown, as well as all two-way interactions between a dummy for California, 
Treated industry, and Post-2005 (Q3). �T reated reports the sum of the reported coeÿencts, with standard errors 
calculated using the delta method. The sample is restricted to county-industries for which quarterly employment 
and wage information are available for the entire time period (2000-2017). A�ected industries include agriculture, 
construction, wholesale, transportation and warehousing, retail, real estate and rental/leasing, professional, sci-
entifc and technical services, administrative support and waste management, and other services (except Public 
Administration), and are selected on the basis of industry-specifc analyses of the change in temperature-injury 
relationships pre- and post-2005. Among these, regulated industries include agriculture, construction, wholesale, 
transportation and warehousing, and administrative support and waste management. Columns (4)-(6) omit agri-
culture, based on the observation that QCEW measures agricultural employment relatively poorly, and minimum 
wages may be more likely to bind. 
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Table B11: Di�erences in Di erences: Log Employment Level 

(1) 
All A�ected 

(2) 
Reg. 

(3) 
Unreg. 

(4) 
All A�ected 

(5) 
Reg. 

(6) 
Unreg. 

CAxPOST -0.024�� -0.013 -0.042��� -0.024�� -0.013 -0.040��� 

CAxTREATxPOST 
(0.009) 
-0.029�� 

(0.013) 
-0.094��� 

(0.013) 
0.050�� 

(0.009) 
-0.027�� 

(0.013) 
-0.097��� 

(0.013) 
0.049�� 

N 
(0.010) 

1,901,736 
(0.014) 

1,901,736 
(0.018) 

1,901,736 
(0.012) 

1,858,824 
(0.018) 

1,858,824 
(0.018) 

1,858,824 

� Treated -0.053��� -0.107��� 0.009 -0.051 -0.110��� 0.009 
0.018 0.017 0.017 0.019 0.021 0.018 

County FE 
Industry FE 
Industry x Quarter FE 
Quarter x Year FE 
Two-way interactions 
Agriculture 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
Yes 
Yes 
No 

Notes: Heteroskedasticity robust standard errors clustered by state and year are in parentheses (* p<.10 ** p<.05 
*** p<.01). Coeÿcients in each column come from a regression of log total employment in a given county-industry-
quarter (NAICS 2-digit) on the variables shown, as well as all two-way interactions between a dummy for California, 
Treated industry, and Post-2005 (Q3). �T reated reports the sum of the reported coeÿencts, with standard errors 
calculated using the delta method. The sample is restricted to county-industries for which quarterly employment 
and wage information are available for the entire time period (2000-2017). A�ected industries include agriculture, 
construction, wholesale, transportation and warehousing, retail, real estate and rental/leasing, professional, sci-
entifc and technical services, administrative support and waste management, and other services (except Public 
Administration), and are selected on the basis of industry-specifc analyses of the change in temperature-injury 
relationships pre- and post-2005. Among these, regulated industries include agriculture, construction, wholesale, 
transportation and warehousing, and administrative support and waste management. Columns (4)-(6) omit agri-
culture, based on the observation that QCEW measures agricultural employment relatively poorly, and minimum 
wages may be more likely to bind. 
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Figure B15: Trends in CPS Employment 

Notes: Figure B15 shows the event study of the HIPS policy implementation on CPS employment levels 
in California and non-California MSAs. Coeÿcents are estimated relative to employment levels in the 
year prior to the implementation of the policy. Regressions include MSA and industry by quarter fxed 
e�ects. The sample covers the full CPS period from 2000 to 2017. Standard errors are clustered at the 
MSA level and shown in light grey bars. 
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Figure B16: Trends in CPS Employment by Treated Industries 
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Notes: Figure B16 shows the event study of the HIPS policy implementation on CPS employment levels in California and non-California MSAs 
by Treated and non-Treated industries. California is show in the left panel while non-California MSAs are shown in the right panel. Coeÿcents 
are estimated relative to employment levels in the year prior to the implementation of the policy. Regressions include MSA and industry by 
quarter fxed e�ects. The sample covers the full CPS period from 2000 to 2017. Standard errors are clustered at the MSA level and shown in 
light grey bars. 
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