EUREKA! 2011

PREPARING YOUR POSTER

1) Use **power point** to design your poster. Some sample posters are attached. You may use any of them as a rough model. You may also be able to draw on past posters from your group. Although you should consider all of these examples, feel free to be creative in your presentation.

2) The finished size of all the posters is 35.5 x 46.5. To choose a page size to design from, select 35.5 x 46.5, and it will print fine. You can also choose standard letter size (8.5 x 11). The ratio is the same.

3) **Everyone should include a logo for the Calhoun Honors College and for Eureka!** These can be placed in the upper corners (see attached sample poster). Feel free to lift logos from the sample posters or get them from CU web sites.

4) You should also include an Acknowledgment section. Here you should include the text, **“Clemson University and the Calhoun Honors College are gratefully acknowledged for support of the Eureka! Program.”** You can also acknowledge any other funding agencies that your advisor suggests and possibly any people that helped with your poster, other than those listed as co-authors.

5) In general, your poster should include the following sections:

- **Abstract** – Brief description of the work to be presented.
- **Introduction** – Background of the project. Describes: What’s already been done, what’s left to do, why should we care, etc.
- **Methods** – Brief discussion of the experimental methods used.
- **Results** – Just what it sounds like. The results of your work.
- **Discussion** – Discussion of the significance of the work. Tells what it means.
- **Conclusions** – Counterpoint to the Introduction. Tells how you have advanced the project.
- **Acknowledgment** – See above.
6) As far as the rest goes, just use common sense. A poster should serve to entice viewers to want to know about your work, and it should provide you with ammunition and supporting evidence to tell your story. Keep it simple - a picture is worth thousands of words. Nothing turns people away from a poster more than endless pages of text (boring). You may want to use the bullet approach, giving just enough information to make the viewer want to know more. As for the font, it is better to use Arial. It's easy to read. You can go as small as 4 pt font on the posters. It looks tiny when composing it, but it's easily readable when printed full-size. The more graphics and images you can put in the poster, the more visual interest it will have.

7) Finally, when you stand in front of your poster the day of the symposium, be fully prepared to answer the question "What does all of this mean?" or to respond to "So, tell me about all this". Be interested and enthusiastic and ask as many questions as you answer. There are going to be a lot of intelligent and experienced people looking at your work, and they can be a big help if you let them.
Preparing a Poster
Abstract
This describes what I thought I would be doing and what my Advisor told me would result. As you look over this poster, you should probably conclude that advisors don’t know much.

Introduction
As far as I can tell a lot of work has been done on the problem to be studied, but the results thus far have not agreed with my advisor’s pet theories (he keeps babbling about a boat and a rock – Geez!), so we’re going to keep at it, until they do.

Methods
Taken from the journal, Arcania Esoterica, the methods used in this study are like something from the dark ages. When I told my Mom what I was doing, she said that she had just seen an episode of Oprah, which reported that three people dropped dead, doing exactly the same thing. She wants me to come home immediately. Now I want to stay!

Results
The numbers and observations reported below are mostly either made up or were told to me by my graduate student. I’ve never seen a person with bigger eyes or pastier skin. Don’t they ever let these people outside?

Discussion
My advisor says that if we look at the results correctly (like standing on our heads looking in a mirror), they may overturn one hundred years of accepted fact. “Right.”

Conclusions
All in all it was a great summer. I got to go to Carowinds, whitewater rafting, a Drive game, learned that the fate of humanity depends on my having taken folic acid since the day I was born (who eez this folic acid, anyway?), and a bunch of other fun stuff. Research was way more fun than I expected, in fact I think I’ll keep working with my advisor and maybe win an award some day. My Mom will like that.

Acknowledgement
Clemson University and the Calhoun Honors College are gratefully acknowledged for their support of the Eureka! program.
Preparing a Poster

Make it attractive and inviting
Preparing a Poster

Make it attractive and inviting

Like This
Preparing a Poster

Make it attractive and inviting

Not Like This
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read

Hey!
Hey, you!
Yeah, you!
Come over here and take a look at this – you won’t believe it!
Come on – you know you want to.
That’s right ... one foot in front of the other.

Like This
Hey!
Hey you!
Yeah, you!
Come over here and take a look at this – you won’t believe it!
Come on – you know you want to.
That’s right ... one foot in front of the other.

Like This
Not Like This
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.

Your poster should be designed to allow YOU to tell the story of your work. It should be more of an enhanced outline, than a complete narrative. As you prepare your poster, think about how to use what’s on the poster to best describe your work.
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.

Be prepared . . .
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Be prepared . . .

to answer the question, “So, what’s this all about?”

That’s your cue to go into your spiel – try not to make this a memorized recitation, but just an informal description of your work.
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Be prepared . . .
Don’t be:
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Be prepared . . .

Don’t be:

Offensive
Confrontational
Sloppy
Bored
Absent
Inattentive
etc.
Preventing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Be prepared . . .

Finally -
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Be prepared . . .
Finally - use common sense, be creative, and …
Preparing a Poster

Make it attractive and inviting
Make it simple and easy to read
Make it interactive – not self-service.
Be prepared . . .
Finally - use common sense, be creative, and …
Proofread! Proofread! Proofread! Proofread! Proofread! Proofread! Proofread!
Text

Size
Size 8
Size 10
Size 12
Size 14
Size 16
Size 18
Size 20
Size 24
Size 32
Size 36
Size 40
Size 44
Size 48
Size 60
Text

Text should be visible from 3 to 5 feet away.

Use \(\geq 24 \) pt font for most titles and text (although even 4 pt is readable for references, short notes, etc.)
Font matters

Font matters
Text

Font matters
Sans Serif
Sans Serif
Serif
Serif
Colors matter

Colors matter
Colors matter

Colors matter

Colors matter

Colors matter

Colors matter

Colors matter

Colors matter

Colors matter

Colors matter

Colors matter

Colors matter
Colors matter
Colors matter
Colors matter
Colors matter
Organization?

Blah, blah, blah

OMG!
Help me!

Wah, wah, wah.

Organization?
Traditionally
Why Not?
This is the Title of the poster
Your name, Grad Student, Professor or Dr. Advisor

Department of Silly Walks

Acknowledgment
Any other students, or other helpers. Clemson University and the Calhoun Honors College are gratefully acknowledged for their support of the Eureka! program.
Resolution of graphics

50 dpi
Resolution of graphics

50 dpi

100 dpi
Resolution of graphics

50 dpi

100 dpi

300 dpi
Summary

- Entice Viewers
- Provide ammunition to tell your story
- Bullet approach is better than lots of text
- Use large, easy to read text
- Use large, good quality graphics (a picture or graph is worth lots and lots of text!)
- Be nice
- Be interested
- Be prepared
Abstract

Ceramic oxide particles have been melted and studied to describe surface or catalytic absorption properties of single crystal substrates. The experiment is designed to monitor contact angle evolution during temperature change in order to confirm whether or not a “complete wetting” scenario can be observed. This would mean that the contact angle becomes zero, producing a film. Energy input is used to overcome the surface tension between the particle and the substrate, allowing for a description of the surface or interface force. This is useful in determining catalytic and other properties of ceramic oxides at high temperatures. Ridge formation is believed to be the main source of interference.

Method

1. Prepare the oxide substrate through ultrasonic cleaning.
2. Select particle of a different ceramic oxide of appropriate size.
3. Place particle on the substrate, and load into top or side view furnace apparatus with inert atmosphere.
4. Monitor the particle. At the first sign of the melting, begin high resolution documentation at regular intervals until such documentation is futile. This occurs at high temperatures where evaporation becomes a significant force in the wetting process.
5. Set the furnace to cool down and continue to document at regular intervals until resolidification occurs.
6. Once all photo documentation is complete, begin analysis: For the side view: Draw a tangent line at the droplet interface and measure its constituent horizontal and vertical components. Calculate the contact angle by using the Arc Tangent Function. For the top view: provided the droplet is circular, measure its diameter.
7. Once the data is gathered, graph and determine trends to illustrate the wetting behavior of the oxide particle on its substrate.

Results

There is a linear relationship between temperature and recorded values. At high temperatures, values approach a constant value, deviating from the previous trend.

Introduction

Trials have not achieved complete wetting; they instead assume a constant value. This suggests that if a complete wetting is possible, it will be difficult to attain, most probably because of ridge formation at the triple point.

Significance of Research

Exploration of ceramic oxide properties at high temperatures is necessary to understand applications that may be useful in developing a variety of fields. Even data from mistakes is kept for later study, because a mistake today, may be the key to tomorrow’s advancement.

Acknowledgements

Clemson University and the Calhoun Honors College are gratefully acknowledged for support of the Eureka! Program.

Figure 1: Diagram of wetting experiment. In grey, the substrate. In blue, the molten oxide as bulk liquid with contact angle and surrounding film.

Figure 2: (Left) Top view of molten Zinc Oxide with a line drawn for diameter measurement. (Right) Side view.

Figure 3: (Left) A sample of top view data results. (Right) A sample of side view data results. Both are Bi2O3 (3% ZnO) on ZnO (11-20).

Figure 4: A sample of the beautiful anomalies of this project. Their presence underscores the purpose of the experiment and may have an unknown importance all their own.
The Animated Work Environment

Mary Grace Rutland, College of Engineering

Mentor: Dr. Keith Green, Department of Architecture

Abstract

The Animated Work Environment (AWE) team aspires to create a versatile, user-friendly environment for the home or small business through a collaboration of architecture, robotics, engineering, and psychology. As the EUREKA! Program started, the first stage of the project was coming to a close with the completion of a hinged prototype of the first four panels of the movable display structure by July 27, 2007. Concurrently, progress was underway for a desk design to adjust to the needs of the user: from individual work to presentations to recreational gatherings. By the third of August, 2007, plans were set to begin cutting the desk prototype from 3/4” plywood at the start of the Fall Semester. As the EUREKA! Program comes to a close, the AWE team begins to research the various computers, flat screen monitors, and accessories to obtain a user-friendly environment.

Introduction

How can a work environment be created that is versatile and user friendly?

- Versatility
 1. Meetings
 2. Gaming
 3. Presentations
 4. Composition
 5. Viewing
- User Friendly
 1. Wireless technology
 2. Six preset configurations
 3. Moveable desk with three separable work stations

Method

As this is a multi-disciplinary project comprised of several smaller tasks with cooperation among team members from several different departments and degree levels, it was imperative that the desk design and the wireless technology meet the specifications and the approval of every team member.

The desk started out as a more geometric shape; however, after every meeting, the desk took on more and more complex curves to accommodate for user comfort and ease while still maintaining a clean, architecturally pleasing style.

The search for computer technology was no less complex. The monitors and their mounts for the work station wall had to meet weight specifications, 40 pounds total, and still be functional as well as be VESA, mounting standards, compatible. The mouse and keyboard had to be wireless as well as reliable in their responses. The CPU had to be ideal for gaming but still well equipped for composition and collaboration.

Results

In the end, the desk was rather amorphous with three moveable sections.

Results Continued

The monitors are to be 19 inch flat screens with custom made mounts in order to better control weight and torque with the motors. The mouse and keyboard are wireless pieces by Microsoft with an ergonomic design. Finally, the CPUs are to be custom built to eliminate excess software and streamline the design to fit in the slots designed for the units.

Conclusions

As this project is still a work in progress, it is to soon to have a definite conclusion. The usability testing of the Animated Work Environment will begin in about a month, hopefully by mid-September, at which time there will be conclusive evidence as to whether or not the Animated Work Environment is functional.

Significance of Research

This project is meant to bring the technology that is available to the major corporations to the small business and the homeowner on a smaller scale. Should the Animated Work Environment pass the usability testing, this research project will have succeeded in bringing a versatile, electronic medium to the masses, thus allowing for gamers, entrepreneurs, students, and at-home businessmen to all use the same space and computer systems for radically different uses.
Nutrient Intake and Health of Dominican Children

Tyler Anne Hassenfeldt, College of Business and Behavioral Sciences
Dr. Beth Kunkel, Professor of Food Science and Human Nutrition, and Mrs. Beth Wall, Food Technology Student

Abstract

The aim of this study was to compare how the nutrient intake in Dominica changes as the country becomes more Westernized and leaves its indigenous roots behind. The influence of the Carib Indians is still visible in the foods that are eaten on the island today. The original set of data was collected in the fall of 2005, and a second set of data will be recorded in the fall of 2006 on a return trip to Dominica.

Introduction

The ten villages in Dominica that were studied were:
• Three villages along the northern tip of the island (Pennville, Vieille Case, and Thibaud)
• Two villages in the Carib Indian reservation area (Salybia and Sineku)
• Five villages along the south-eastern coast (La Plaine, Boetica, Delices, Petite Savanne, and Bagatelle)

Methods

The heights, weights, and skinfold thicknesses (a measure of overall body fat) of 135 Dominican schoolchildren from ages 5 to 14 were measured and recorded. The children were also asked to recall all of the foods they had eaten in the last 24 hours, including meals, drinks and snacks. Each child was asked to have a parent fill out a survey relating to the study. The survey included questions about food availability and preparation as well as other health-related issues.

Back in the U.S., Body Mass Indexes (BMIs) were calculated for each child according to a formula which took into account height, weight, age and gender. The same formula also generated a percentage that showed how a child’s BMI compared to other children of the same age and gender.

Results

Average heights, weights, skinfold thicknesses, body mass indexes, and growth percentiles were calculated for each of the ten villages. The averages for all of the villages together were also calculated and are displayed below.

<table>
<thead>
<tr>
<th>Category</th>
<th>Average Height</th>
<th>Average Weight</th>
<th>Average Skinfold Thickness</th>
<th>Average BMI</th>
<th>Average Growth Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>55.09 inches</td>
<td>86.26 pounds</td>
<td>11.39 mm</td>
<td>17.06</td>
<td>54.78%</td>
</tr>
</tbody>
</table>

Shown below are the extremes for each category and the village from where each extreme came from:

<table>
<thead>
<tr>
<th>Category</th>
<th>Average Height</th>
<th>Average Weight</th>
<th>Average Skinfold Thickness</th>
<th>Average BMI</th>
<th>Average Growth Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tallest</td>
<td>69.51 inches</td>
<td>79.38 pounds</td>
<td>12.54 mm</td>
<td>18.06</td>
<td>62.32%</td>
</tr>
<tr>
<td>Shortest</td>
<td>51.25 inches</td>
<td>62.22 pounds</td>
<td>9.83 mm</td>
<td>15.95</td>
<td>45.43%</td>
</tr>
<tr>
<td>Highest Average</td>
<td>62.22 pounds</td>
<td>16.06</td>
<td>12.54 mm</td>
<td>18.06</td>
<td></td>
</tr>
<tr>
<td>Lowest Average</td>
<td>51.25 inches</td>
<td>15.95</td>
<td>9.83 mm</td>
<td>15.95</td>
<td></td>
</tr>
</tbody>
</table>

As shown from samples of the twenty-four hour recalls, Dominican children have begun to eat more Westernized food. While the children continue to eat traditional foods, such as fish, chicken, dumpling soup, rice and beans, root vegetables and tropical fruit juices, new processed foods are gradually being incorporated into their diets as well. Some of these newer foods include packaged chips and cookies, soda, peanut butter, hot dogs, popcorn and Kool-Aid. As this project continues, the specific nutrients within each of the foods that was recalled by the children will be organized by a software program called Genesis. Generalizations about the specific nutrient intake of the children, the villages and the country as a whole will be able to be made. These generalizations can be compared to the information gathered about the heights, weights and BMIs of the children in order to see how much of an impact the foods these children eat has on their health.

Conclusions and Significance

As shown from samples of the twenty-four hour recalls, Dominican children have begun to eat more Westernized food. While the children continue to eat traditional foods, such as fish, chicken, dumpling soup, rice and beans, root vegetables and tropical fruit juices, new processed foods are gradually being incorporated into their diets as well. Some of these newer foods include packaged chips and cookies, soda, peanut butter, hot dogs, popcorn and Kool-Aid. As this project continues, the specific nutrients within each of the foods that was recalled by the children will be organized by a software program called Genesis. Generalizations about the specific nutrient intake of the children, the villages and the country as a whole will be able to be made. These generalizations can be compared to the information gathered about the heights, weights and BMIs of the children in order to see how much of an impact the foods these children eat has on their health.

Acknowledgements

Clemson University and the Calhoun Honors College are gratefully acknowledged for support of the Eureka! Program.