Bed Capacity Planning and Smoothing Using Computer Simulation on the OR Master Schedule

Michael W. Carter

Centre for Healthcare Operations
Mechanical and Industrial Engineering
University of Toronto
Outline

• Brief introduction
• Hospital bed capacity planning
• Operating room Master Surgery Scheduling
The Importance of Health Care

- Health care is North America’s largest single industry.
- Estimated total spending in Canada was $219 billion (CN) in 2015. ($2.9 trillion in the US)
- In Canada, in 2013, $4,569 US per person was spent on health care compared to $9,086 in US
• Providers are private.
• Gov’t pays for services (like US Medicare)
• Covered if:
 – “Medically necessary”
 – Done in a hospital
 – Done by a doctor
• 1990 – Internationally recognized leader
• 2000 – We had slipped significantly
• 2008 – Major funding increases – improving
• 2012 – Major funding challenges!
Commonwealth Report 2014

<table>
<thead>
<tr>
<th>Country</th>
<th>AUS</th>
<th>CAN</th>
<th>FRA</th>
<th>GER</th>
<th>NETH</th>
<th>NZ</th>
<th>NOR</th>
<th>SWE</th>
<th>SWIZ</th>
<th>UK</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Ranking (2013)</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Quality Care</td>
<td>2</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>11</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Effective Care Safe</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Care Coordinated</td>
<td>3</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Care</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Patient-Centered Care</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Access</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Cost-Related Problem</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Timeliness of Care</td>
<td>6</td>
<td>11</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Efficiency</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Equity</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Healthy Lives</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Health Expenditures/Capita, 2011**</td>
<td>$3,800</td>
<td>$4,522</td>
<td>$4,118</td>
<td>$4,495</td>
<td>$5,099</td>
<td>$3,182</td>
<td>$5,669</td>
<td>$3,925</td>
<td>$5,643</td>
<td>$3,405</td>
<td>$8,508</td>
</tr>
</tbody>
</table>

Notes: * Includes ties. ** Expenditures shown in $US PPP (purchasing power parity); Australian $ data are from 2010.

Background

- Master Surgical Schedule
- Revised every 6-12 months
- Block booking OR time
- Major driver of resource utilization downstream (PACU, ICU, beds) and upstream (wait lists).
- How can you manage the volumes?
- I will discuss two applications.
Hospital Bed Capacity Planning

Tian Mu Liu and Michael Carter
Model Objective – To estimate the number of beds a hospital needs during a typical week in order to provide a given level of service

- We constructed a prototype:
 - In-patient groups are categorized by: admission category, provider service, bed group
 - A typical week includes 21 shifts (seven days a week and three shifts a day)
Model Overview

- Use one year of historical data
- Model surgical patients based on a “typical” full week OR schedule
- Model medical/emergent/urgent patients based on random historical arrivals
- We do not consider ward capacity; we tell you how many beds you need in each service
- We simulate several weeks, and find a range (confidence intervals)
- Separate LOS: ED (admitted), ICU, ward, ALC
• Admitted patients – “Bed Blockers”: 10-17
• Bed demand peaks on weekday evenings (3-4 more)
• Number of required SCU beds range: 55-63
• Bed demand is relatively consistent throughout a week
Ward Bed Demand

- Ward beds range: 344-370
- Bed demand peaks on Thursday evening
Average Demand by Service

Average Number of Beds Required

- **1 Infants**
- **2 Pregnancy & Childbirth**
- **3 Pediatrics**
- **4 Mental Health**
- **5 Surgical**
- **6 Medical**
Balancing Demand

• By swapping blocks for a few surgeons, we can dramatically reduce the peaks in bed demand

• Tian has created an automated procedure

• Surgeons can be “fixed” in place
Surgical Ward and ICU beds
<table>
<thead>
<tr>
<th>Revised</th>
<th>Shift</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR 1</td>
<td>Morning</td>
<td>Pooler, Stephen</td>
<td>Meiers, Suzanne</td>
<td>Tse, Edward T W</td>
<td>Kaban, Gordie K</td>
<td>Akinbiyi, Amos A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Duane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Cuddington, Gordon W</td>
<td>Cuddington, Gordon W</td>
<td>Tse, Edward T W</td>
<td>Kaban, Gordie K</td>
<td>Akinbiyi, Amos A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR 2</td>
<td>Morning</td>
<td>Beggs, Alan J</td>
<td>Rodwan, Kahled</td>
<td>De Jager, Jacobus</td>
<td>Fraser, James</td>
<td>De Jager, Jacobus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Francois</td>
<td>Murray</td>
<td>Francois</td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Beggs, Alan J</td>
<td>Rodwan, Kahled</td>
<td>De Jager, Jacobus</td>
<td>Fraser, James</td>
<td>De Jager, Jacobus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Francois</td>
<td>Murray</td>
<td>Francois</td>
</tr>
<tr>
<td>OR 3</td>
<td>Morning</td>
<td>Chikukwa, Tineyi</td>
<td>Mccarville, Donald James</td>
<td>Rodwan, Kahled</td>
<td>Cardoso, Reynaldo</td>
<td>Kopriva, David</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Carter, J</td>
<td>Mccarville, Donald James</td>
<td>Zhai, Akram</td>
<td>Cardoso, Reynaldo</td>
<td>Kopriva, David</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mohamed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR 4</td>
<td>Morning</td>
<td>Buwembo, Joseph E</td>
<td>Ekong, Christopher E U</td>
<td>Buwembo, Joseph E</td>
<td>Tse, Edward T W</td>
<td>Abed, Mohammed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moghare</td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Kumar, Anil</td>
<td>Ekong, Christopher E U</td>
<td>Buwembo, Joseph E</td>
<td>Lett, Christine D</td>
<td>Dewar, Leith Robert</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>OR 5</td>
<td>Morning</td>
<td>Kumar, Krishna</td>
<td>Tsang, John C</td>
<td>Dewar, Leith Robert</td>
<td>Kumar, Anil</td>
<td>Korkola, Stephen J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Zhai, Akram</td>
<td>Tsang, John C</td>
<td>Moustapha, Ahmad</td>
<td>Meiers, Suzanne</td>
<td>Dewar, Leith Robert</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mohamed</td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>OR 6</td>
<td>Morning</td>
<td>Onasanya, Olanrewaju</td>
<td>Moustapha, Ahmad</td>
<td>Carter, J</td>
<td>Moustapha, Ahmad</td>
<td>Chikukwa, Tineyi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Korkola, Stephen J</td>
<td></td>
<td>Carter, J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Korkola, Stephen J</td>
<td></td>
</tr>
<tr>
<td>OR 7</td>
<td>Morning</td>
<td>Meiers, Suzanne</td>
<td>Pillay, Poogendrem</td>
<td>Saczek, Krzysztof</td>
<td>Kamencic, Huse</td>
<td>Beggs, Alan J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Meiers, Suzanne</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR 8</td>
<td>Morning</td>
<td>Jabs, Corrine F I</td>
<td>Ogrady, Mark John</td>
<td>Chikukwa, Tineyi</td>
<td>Fritz, James Robert</td>
<td>Cardoso, Reynaldo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Jabs, Corrine F I</td>
<td></td>
<td>Chikukwa, Tineyi</td>
<td>Fritz, James Robert</td>
<td>Cardoso, Reynaldo</td>
</tr>
<tr>
<td>OR 9</td>
<td>Morning</td>
<td>Kamencic, Huse</td>
<td>Tse, Edward T W</td>
<td>Onasanya, Olanrewaju</td>
<td>Bhargava, Rashmi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Kamencic, Huse</td>
<td>Tse, Edward T W</td>
<td>Onasanya, Olanrewaju</td>
<td>Bhargava, Rashmi</td>
<td></td>
</tr>
<tr>
<td>OR 10</td>
<td>Morning</td>
<td>Tse, Edward T W</td>
<td>Jabs, Corrine F I</td>
<td>Chang, Peter Soult</td>
<td>Thiel, John A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afternoon</td>
<td>Tse, Edward T W</td>
<td>Jabs, Corrine F I</td>
<td>Chang, Peter Soult</td>
<td>Thiel, John A</td>
<td></td>
</tr>
</tbody>
</table>
Revised ICU & Surgical Bed Demand

- Sunday:
 - Night: 38
 - Day: 41
 - Evening: 31

- Monday:
 - Night: 35
 - Day: 50
 - Evening: 33

- Tuesday:
 - Night: 44
 - Day: 53
 - Evening: 41

- Wednesday:
 - Night: 44
 - Day: 53
 - Evening: 41

- Thursday:
 - Night: 45
 - Day: 53
 - Evening: 42

- Friday:
 - Night: 45
 - Day: 43
 - Evening: 41

- Saturday:
 - Night: 39
 - Day: 41
 - Evening: 33

Average number of beds required
Successes and Challenges of Implementing OR Master Scheduling Model at Twelve Hospitals

Daphne Sniekers
Carolyn Busby
Mike Carter
University of Toronto
Goal:
To develop a single model that can be used by any hospital to simulate each hospital’s unique perioperative process

Tools:
Simul8 to simulate the process
Excel to house inputs variables to define each hospital
Model Objectives

1. Provide decision support through quantitative analysis of complex systems.
2. Develop a model that can answer tactical, mid- to long-term decisions for resource requirements and process flow.
3. The model is easily implemented and able to answer “what-if” scenarios.
Model Background

Patient Flow:

- Wait List Arrival
- Wait List
- Schedule to OR block
- OR LOS
- Inpatient LOS
Inputs/Outputs

- Hospital Structure
- Schedule Info
- Patient Info and Flow

Model

- Volumes
- Cancellation rates
- Bed Occupancy
- Utilization
Model Background

Scenario Testing Examples

• Changes in booking policies: i.e. short cases first, etc
• Changes in block schedule
 – Longer OR days
 – Change in service/surgeon assignments
• Increase in resources - PACU, ICU or ward beds
• Decreased ALC LOS times
• Reduced variability between surgeons, between booked time and actual time
Implementation
Saskatchewan Wait Times: (in 2011)

• “No wait longer than 3 months by 2014”
• Victoria Hospital in Prince Albert, SK.
 – Ortho wait times avg. 8 months; 90th % 18 months
 – Wanted a new Ortho surgeon plus OR time plus $2M
 – Used surgical model: average weekly throughput
 – Used current wait list and predicted arrivals
 – Ortho will be fine in 2014!
 – But, Gen. Surg. wait will grow!
 – And, serious bed capacity issues (they knew that)
Ring-fencing surgical beds

- High degree of medical off-serving in surgical beds
- Ring-fence surgical beds
- In exchange give some surgical beds to medical
- Result: Reduced cancellations & medical off-servicing (win-win!)
- Implemented in hospital based on recommendation
- Results matched model prediction
Implementation Examples

How can hospital increase throughput without adding additional ORs?

• Explored weekend and 2nd shifts
• Determined how many additional beds would be needed
• Smoothing throughout week would be an asset
Validation: Do the model volumes match reality?

- OR does not actually start at 8:00 AM
- Some docs only using part of their allocation
- Reduced summer schedule that did not reduce as much as planned
- Particular service picking up majority of extra time available
- Urgent time being used for elective patients
- OR days running longer than planned
Challenges

• Data
• Validation
• Communication
• Politics
• Training/On-going use
• Impact assessment
Challenges

• Data
 • We need real patient level surgical, LOS, transfer data
 • Transfer from hospital – timelines, accuracy, multiple databases
 • Process into 35 Excel Input sheets – manual, lacking data checks (for now)
 • Timing – only available a few months later, stable time period, changing processes
 • Quality – often doesn’t add up!
Challenges

Validation

• Rules are made to be broken...
• Things often aren’t what they seem
• Some more eager to validate than others!
Challenges

Communication

• Different meanings e.g. “urgent”, “inpatient”, “cancellation”, “off-service”/”bed-spaced”
• Political impact “underutilization”, “not enough OR time”, “validation”
• Clarity on what model can and can’t do
Challenges

Politics

• Some stakeholders concerned outcome won’t favour their position
• Attempt to discredit from the start
• Mitigation: Neutral, Internal champion, validation, language, wide involvement in scenario generation
Challenges

Training/on-going use

• Varying degree of success: highly dependent on recipient
 • Leadership
 • Skilled Operator
• Not commercial product – not completely user friendly (yet!)
Challenges

Impact Assessment

• Often difficult to assess

• Model is one step, one piece of information
 • Quantitative “Decision Support”

• Impact/Implementation decision often made long after project is over
Conclusion

• Model has been successfully implement at 12 hospitals
• Wide variety of issues tackled
• On-going use in several hospitals
• Impact of Model is large due to it’s ability to be tailored to specific hospitals.
• Very important to have internal champion and awareness of internal politics
Thank you