Our Experiences with Organic Apple Orchard

Curt R. Rom
University Professor
Co-Director, Center for Agricultural and Rural Sustainability
Department of Horticulture
University of Arkansas
The Team

The University of Arkansas Organic Research Team
- Curt Rom, Horticulture, Project leader
- Elena Garcia, Horticulture, Extension and Outreach
- Donn Johnson, Entomology, Pest Management, Apprentice Management
- Mary Savin, Soil Biology
- Jennie Popp, Economics
- Technical Support: Jason McAfee, Heather Friedrich, Barbara Lewis
- Graduate Students: Dr Hyun-Sug Choi, Sam Kim, Neal Mays, Jennifer Billig
- Student Apprentices: Stephen Steward, Jay Gates, Carolina Proudfoot
- Grower Cooperators: A&A Orchards, Dickey Farms
Our Experiences
Program Overview

Goals of Research Program

- To develop sustainable and organic production systems for Arkansas and Southern US region producers to capture high value markets
- Small scale, or scale neutral technologies
Organic Apples

36°N

33°N
Orchard Conditions in Upper Mid South Region

Challenges

• Soils
 – Mineral, heavy, often highly eroded
 – Low nutrient content, low pH

• Pests
 – Multiple insect pests, multiple generations
 – Diseases: fireblight, apple scab, cedar apple rust, frogeye leaf spot, Brooks spot, black and white rot, bitter rot
 – Competitive Vegetation: multiple plants, 4 season succession

• Weather: Fluctuating weather; hot, humid, dry summers

Organic Apples
Questions from Growers

How can we sustainably and organically manage:

- Crop thinning
- Competitive vegetation management
- Nutrient management
- Insect and Disease management

And, is it economical
The “Big” Questions

• Can we grow apples in an organic system in our region?

• How can we control competitive vegetation?
 – And how does that impact the orchard ecosystem

• How to provide sufficient and timely nutrition from organic sources?
 – And the interaction with competitive vegetation management
Additional Questions

• How does management affect soil quality and health?
• Does an organically managed orchard sequester carbon?
• Can we control insect and disease pests with organic means?
• How sustainable are organic management techniques?
Organic Orchard Research

Project Goal:
- Develop best management practices for establishment of sustainable organic apple orchard for the south

Project Objectives:
- Evaluate tree, soil, system responses to:
 - Organic Ground Cover Management System
 - Organic Nutrient Sources
Experimental Treatments

Ground Cover Treatment (GT)
- 1. Municipal green compost (GC)
- 2. Woodchip (WC)
- 3. Shredded White Paper (SP)
- 4. Mow-n-blow (MB)
 - Tree plot size was 2m x 2m (2m wide vegetation mgmt strip)

Nutrient Sources (NS)
- 1. Untreated control (nutrients derived from GT) (NF)
- 2. Composted manure (poultry litter) (PL)
- 3. Commercial Organic Fertilizer (poultry or alfalfa based) (CF)
 - Applied at recommended N rates
Experimental Design

- Random Complete Block Design (4x3 factorial)
 - 4 Groundcover Management Systems (GMS): main plot effect
 - 3 Nutrient Sources (NS): subplot effect
- 6 blocks; 72 total treatment plot combinations
- Treatment trees completely guarded on all sides
- Annual springtime application of GMS and NS
 - GMS: 2m by 10-12 cm deep band
 - NS: adjusted to 50 g N/tree/year
Experimental Design

- Two wire vertical axis training system
- Spacing: 2 m between trees; 4 m between rows (0.4 ha)
- Density: 1485 trees/ha (610 tr/ac)
Plant Material and Management

- **Management Standards**: US NOP Certified Organic
 - Treatments employed at planting reapplied annually in March

- **Preplant**: Leveled, pasture-fed animal manure added as amendment at 3 mt/ha, soil limed, cultivated, summer cover, cultivated, cover crop planted.

- **Permanent Cover Crop**: fescue (*Festuca spp cv. K-31*) + white clover; nurse crop of winter wheat
Nutrient Sources

<table>
<thead>
<tr>
<th>Certified Commercial Organic Fertilizer</th>
<th>Locally Available Poultry Litter. Contents: bedding, poultry manure</th>
</tr>
</thead>
</table>

![Fertilizer](image1.jpg)
![Poultry Litter](image2.jpg)
Organic Apples
Groundcover Management Treatments

- Shredded paper
- Mow-blow
- Wood chips
- Green compost
Treatment Nutrient Contents

<table>
<thead>
<tr>
<th>Treatment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Poultry Litter (PL)</td>
<td>1.2</td>
</tr>
<tr>
<td>Commercial Fertilizer (CF)</td>
<td>7.1</td>
</tr>
<tr>
<td>Control (NF)</td>
<td>0.9</td>
</tr>
<tr>
<td>GC</td>
<td>1.4</td>
</tr>
<tr>
<td>WC</td>
<td>.9</td>
</tr>
<tr>
<td>SP</td>
<td>.22</td>
</tr>
<tr>
<td>MB</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Report

• Competitive Vegetation Management
• Disease Control
• Insect Control
• Soils and Nutrient Management
• Tree Growth and Performance
Competitive Vegetation Management
Survival

Compost
WoodChip
ShredPaper
Mow/Blow
Vegetation/Weed Density

- Compost
- Wood Chips
- Mow-Blow
- Shredded Paper

Year of Study

Vegetation Cover (%)
Vole Damage

Vole Damage Rating (0-5) for different ground cover systems and nutrient source treatments.
Competitive Vegetation Mgmt

Greatest need was during establishment
 – Became less challenging as trees matured and canopy closed.
Ground Covers

Mow and Blow

- *Too much competitive vegetation; too competitive*

- Did not improve soil quality and health
- Lowest amount of water infiltration and percolation;
 - highest soil density
- Greatest vole damage
- Highest tree loss
- Reduced tree growth and performance
 - Lowest yields and performing
- Highest insect populations, esp. Japanese Beetles and PC

- Did not produce enough mulch early enough in the season
 - May work with more intentional vegetation; need to have a mulch by April and through July.
Ground Covers

Shredded paper
- Best spring weed control
- Problem on young trees due to excess Na release
- Caused pH shift to >8.0 (from 6.0)
- Tied up N
- Broke down by August; autumn vegetation
- More mature trees responded well
 - Increasing yields; reflected light
- At some points became anaerobic under the mulch
Ground Covers

Compost
- Over applied N when applied for vegetation control and in combination with nutrient sources
- Caused pH shift to >7.0
- Stimulated weeds under the trees
- Strong habitat for voles
- Trees were too vigorous;
 - Stimulated lots of surface roots into the compost
 - Trees became scion rooted
 - Became nonproductive
- Did result in significantly increased soil OM as deep at 6-10” into the rootzone
- Did increase soil fauna
Ground Covers

Woodchips
- Breaks down slowly
- Some tie-up of N
 - Took approximately 3-5 years to stabilize
- Increased soil OM, maintained pH
- Increased soil fauna, fungi
- Suppressed many weeds but Bermudagrass grew over the top
 - Controlling vegetation in woodchips was difficult
- Did not need to be applied annually
- Good alternative, especially combined with cultivation
Competitive Vegetation Management Alternatives

Some vegetation is probably ok

– However, we do not know how much
– Less competition for young trees, more for mature trees
– Perennial vegetation is largest problem
– Spring, early summer vegetation is most competitive with tree growth and nutrition
 • March - June
Best Practices for Competitive Vegetation Management

1. Start with a clean planting row
 – Consider solarization or plastic cover during planting and establishment

2. Use a managed ground cover
 – There is limited knowledge of adaptable ground covers
 – Potential for use of endophyte infected fescues

3. Minimize spreading, creeping grasses such as Bermudagrass and Johnson grass

4. Consider combination of under-tree, shallow tillage followed by mulch systems
 – Wood chip mulches provide benefits to soil
 – Paper mulch is excellent for water retention and vegetation control
Cultivation “Sandwich” System

After cultivation:
- Apply Nutrient Source
- Top with compost
- Top and seal with woodchips
Learning from Mistakes

- Using uncomposted horse manure in field preparation, although improving soil OM and nutrition, introduced weeds
- Use of green compost, stimulated weed growth and introduced weeds
- Use of wood chips, loved by Bermudagrass
- Mow and Blow; too much competition for the tree; excessive mouse problems
- No supplemental nutrition; trees grew but less and did not crop
Alternatives for Competitive Vegetation Management

• Organic Herbicides
• Flaming
• Cultivation
• Combinations
• Plastic Mulches
• Living Mulches
• Doing Nothing – NOT a good alternative
Disease Management
Disease Management

• If, when possible, start with disease resistant cultivars
 – Make sure cultivars are adapted to your region

• Sanitation become a critical management tool
 – Remove all diseased wood
 – Remove all dropped fruit
Disease Management

Scab, Cedar Apple Rust, Powdery Mildew
- Control by cultivar
- Biological controls gave only marginal control in high pressure
- Lime Sulfur and sulfur sprays, copper sprays
- Sanitation is important

Fireblight
- Control by cultivar
- Have lost antibiotics for use
- Sanitation is important
- Fall copper, pre-bloom copper
- Some efficacy of biologicals; marginal control in high pressure years
Disease Management

Fruit Rots: Bitter, Black, White

• No Good Controls
 – Tried to minimize impact with combination of biological fungicides and multiple sulfur applicatoins

• Became a limiting factor
• Must minimize any insect damage
• Related to fireblight infections
 – Sanitation is important
Disease Management

Best management practices

• Select Rs cultivars
• Sanitation
• Pruning
• Strong preventative program
• Strong prophylactic program
Observations on Pest Management

Disease Management

• Quince rust
 – Unique Occurrence in 2012

• Summer rots
 – A problem; will emphasize more summer pruning, orchard sanitation, fall S application, and summer S application, and battery of other suppressants (carbonates, etc.)
Insect Pest Management
Primary, Key Pests

- Oriental fruit moth
 - 3-5 generations, starting at bloom
- Codling moth
 - 4-6 generations, starting at bloom
- Rosy apple aphid
 - Bloom and post bloom
- San Jose scale
 - Post bloom, early summer
- Plum curculio
 - Bloom, early summer; 2-3 generations
Insect Pest Management

Oriental and Codling moths

- Entrust/Bt/Cyd-X applied during first hatch
- Mating disruption was effective in early and mid season
 - Followed by Entrust/Bt/Cyd-X

- Control was good:
 - Damage was 0-7% during orchard trial
Insect Pest Management

San Jose Scale

- Dormant oils to minimize overwintering
- Light oils during flight/crawler stage in May/June (JMS Stylet Oil)
Insect Pest Management

Plum Curculio

• Most difficult to control
 – Suffered 4-100% crop loss; limiting pest
• Reduced first generation feeding and egg laying with Surround® from bloom through post bloom period
• Some efficacy of perimeter *attract-and-kill*
• Some efficacy of bagging fruit after bloom
• Very little control of 2nd and 3rd generation
 – Difficult to scout, monitor, model
• Minimal PC damage strongly linked to rots
• Damage increased with tree age
Observations on Other Insects

- **Mites**
 - No outbreak in organic orchard
- **Control of rosy apple aphids**
 - Patience + treatments
 - Seeding with predators
- **Japanese Beetle; no significant problem**
 - Although in 1 season higher damage rating in MB
Insect Pest Management

Best Practices

• Sanitation and orchard maintenance
• Strong scouting and preventative program
 – Do not let problems build up
Observations on Pest Management

• Cornerstone method:
 – *Strong, high level IPM*
 • Scouting, modeling
 – Deterrence with Surround® (kaolin clay) film
 – Attract/bait, kill
Pest Management

Total number of sprays
- Copper; 2x (fall and spring)
- Surround® averaged 5 applications/yr
 - 3 trips/application
- Oil sprays
 - 3-4 applications/year
- Supplemental insect control (oil, Bt, etc.)
 - 3-8 sprays/year
- Lime-Sulfur and Sulfur Sprays
 - 2 times for thinning
 - 5-7 times for disease control
- Other bio-fungicides, bio-bactericides
 - 5-7 times

- Total: Averaged 20-26 applications with as many as 35 tractor trips/year
Tree Nutrition
Tree Nutrient Management

• Trees require nutrition
 – The no fertilizer treatment trees grew adequately, but did not crop well
 • Showed early season nutrient deficiency symptoms
• No differences between application of poultry litter and certified formulated fertilizer
 – Poultry litter more rapidly released N
• Foliar nutrient analysis a valuable tool
 – No variation due to organic nutrients
• Early season symptoms can be deceiving
 – Trees “grow into” their nutrient supply
Nutrient Sources

No Fertilizer

- Trees grew adequately, but generally had lower cropping
- Trees did not look healthy; pale colors
- Lower survival compared to applying supplemental nutrition
Nutrient Sources

Poultry Litter
- Unstable, varied contents concentration of nutrients
 - Had to pay for analysis annually to calculate rate
- Response was similar to commercial fertilizer
- Quicker N response than fertilizer but faster depletion
- Required 800-1600lbs/acre to satisfy tree N requirement
 - @1%N, required 5kg/tree (10-15 lbs/tree)
- Difficult to handle, manage
- Raised soil pH significantly, >7.0
Nutrient Sources

Certified Commercial Fertilizer
- Response was similar to poultry litter
- Stable, reliable analysis
- Slower N response than poultry litter
- Expensive
- Easy to manage, apply, calibrate
Soil Nutrient Contents

Nitrogen
• Annual application of compost was about 3-5x more N than would be normally required
• NUE and N Loss
 – Using compost resulted in significant excess N with low total N recovery and use efficiency.
 – Wood chips treated trees had similar N contents and higher NUE as compost but significant less loss
 – Although paper and mow/blow had low N excess and loss and high NUE, were low in soil and tree N
Soil Nutrients

- Compost had significant late season available and total N
 – Significantly increased extractable soil NO3, followed by wood chips
 – Generally, soil NO3 has increased during the transition period
- Wood Chips had consistently higher available and total P
- Poultry litter and certified fertilizer showed increased N and P but not significant for all years
 – Poultry litter resulted in highest extractable or available soil NO3 in spring sampling (30 days after application) compared with certified fertilizer or no fertilizer
Tree Nutrition

- Early season foliar nutrition of N was significantly increased for compost and woodchips; but similar later in the season.
- After 8 growing seasons all ground cover treatments and nutrient treatments had adequate and similar foliar nutrient contents.
 - Foliar N was adequate but in the low range for many treatment combinations except GC+PL and GC+CF, which had excess N.
Best Management Practices for Organic Orchard Nutrient Management

1. Base nutrient application rates on annual foliar testing and periodic soil testing (2-5 years)
2. Nutrient source does not have a big impact
3. Apply nutrients **early** in the season, e.g. mid-March
4. Limit competitive vegetation to nutrient management zone
 - Apply nutrients to a vegetation-free strip
 - Consider applying immediately after strip cultivation
5. Cover nutrients with appropriate ground cover system (e.g. compost, wood chips, paper)
6. Be sure orchard system has adequate season-long soil water content
Tree Growth and Performance
Tree Growth and Development

- Wood chips and compost had greatest tree size; height, trunk cross-sectional area, and leaf development
 - All trees achieved target height of 3m height and 15cm² TCSA by year 4
 - All trees managed at 3.25 – 3.5m ht
 - WC and GC were large enough to crop in year 3 or 4; other treatments were delayed until 4-5
- Paper had smallest TCA; reduced chlorophyll, photosynthesis, leaf size
- No nutrient treatment resulted in reduced tree growth and a delay in production capacity
Total Vegetative Growth Estimate

Ground Cover Treatment:
- GC
- WC
- SP
- MB

Nutrient Source Treatment:
- CF
- PL
- NF

TCSA (cm²)

Years:
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
- 2007
- 2006
- Plntg

Organic Apples
Tree Height

Ground Cover Treatment

Nutrient Source Treatment

Organic Apples
Early Yields

Fruit production was significantly reduced by weather in 4 of first 6 cropping years; trees did not make target yields

- All trees bloomed in 3rd leaf although SP and MB were not large enough to sustain a crop
- Crop had reduced crop in 4th leaf with frosts.
- Crop was lost in 5th and 9th leaf due to fruit set (rain) and sunburn, heat drop, rots.
- Poor flower formation and set in years 6 and 7 due to excessive summer heat the year before.
 - Yield in year 6 reduced by sunburn and heat drop
 - Yield in year 7 reduced by May frost and snow
Early Yields

- Wood chips and compost treated trees had significantly greater cumulative fruit yields compared to shredded paper and mow/blow (lowest)
- Certified fertilizer and poultry litter treated trees had significantly greater cumulative yields compared with no fertilizer
- No treatments affected average fruit weight or size
- Compost plus additional nutrients resulted in excessive nitrogen application and has shown a correlation to reduced seasonal yields
Cumulative yield (6 seasons)

<table>
<thead>
<tr>
<th>Ground Cover Treatment</th>
<th>Cumulative Yield (kg/tree)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost</td>
<td>70</td>
</tr>
<tr>
<td>WoodChip</td>
<td>70</td>
</tr>
<tr>
<td>ShredPaper</td>
<td>50</td>
</tr>
<tr>
<td>Mow/Blow</td>
<td>-26%</td>
</tr>
</tbody>
</table>
Cumulative yield (6 seasons)

Cumulative Yield (kg/tree)

Nutrient Source Treatment

None CommFert Poultry Lit

-12%
Nitrogen Application and Cropping

Excessive N reduces yield potential

\[R^2 = 0.5557 \]
General Observations

Soil Conditions

- Ground Cover systems affected soil temperatures and seasonal soil moisture content
 - Shredded paper resulted in reduced soil temps and highest average soil water moisture content
 - Mow/blow resulted in highest soil temps and lowest average soil water moisture content
- Soil Density
 - Density in all decreased since preplant
 - Density in wood chips and compost lightest; paper heaviest
- Water Infiltration
 - Greatest under paper and wood chips
 - Least under mowed, mow/blow
Summary and Conclusions

• SP and WC provided some competitive vegetation management, but additional inputs were needed
• GC provided excess N nutrition at rate it was applied
• GC resulted in significant improvements in soil biology, soil quality and health
• WC resulted in best combination of soil health, tree growth, and cropping
• Either nutrient source provided sufficient nutrition and similar results
• MB resulted in greatest tree loss
• No nutrition resulted in adequate tree growth, but lowest soil biology measurements, and lowest cumulative yields
Summary and Conclusions

- Trees lost cropping due to environmental conditions
 - Seemed very sensitive to environment
 - Cultivar reasons; treatment (N) reasons
 - Lost crop to frosts, freezes, hail and excessive heat
 - Cultivar was not well adapted; importance of CV selection.
- Organic management showed significant improvement in soil quality and health
 - Compared to conventional orchard
 - Decreased soil density
 - Significantly increased water infiltration
 - Significantly increased soil organic matter
 - Significantly increased C and N sequestration
 - Significantly increased soil microorganisms and biological activity
Thanks for your Attention

This presentation is copyrighted and belongs to Curt R. Rom
Permission to use this presentation or elements should be requested.
Organic Herbicides

• Several available
 – Acids: Acetic Acid, Pelargonic Acid
 – Oils: terpenoids – Clove Oil, Mint Oil, etc.
 – Allelopathics
 – Soaps, Salts, etc

• Generally have to be applied at high concentration, frequently
 – Best if applied 2-5 times at 5-7 day intervals
Organic Herbicides

• **Advantages**
 – Easy to apply; similar to conventional
 – Quick Knock Down

• **Disadvantages**
 – Only effective on germinating, tender annuals
 • NOT effective on perennials
 – Short-term response; quick grow-back
 • Physical not Physiological effects
 – Expensive
 • Used at high concentrations
 – Can cause pest problems
Flaming

- **Advantage**
 - Quick and easy, rapid results (if any)

- **Disadvantages**
 - Only effective on germinating, tender annuals
 - NOT effective on established vegetation
 - NOT effective on perennial vegetation
 - Can have quick regrowth
 - Physical not physiological effect
 - Sustainable?? Heavy use of energy, petrol
 - Expensive; may require monthly applic.
 - Fire hazards (use with irrigation running, and well watered fields)
Cultivation

Types: shallow cultivation, rotary hoes

• **Advantages**
 – Control when needed; quick
 – Shallow Incorporation of OM
 – May reduce mice

• **Disadvantages**
 – Disturbs soil; exposes soil to air
 – May reduce surface OM
 – May prune surface tree roots
 – Requires frequent cultivation; Petroleum use
Organic Apples
Plastic Mulches

• Polyethylene Fabric Mulch
 – Advantages
 • Excellent control
 • Excellent moisture retention, best
 • Fast to apply; lasts multiple years (4-7+ yrs)
 • Possible insect barrier
Strategies and Alternatives

• Polyethylene Fabric Mulch
 – Disadvantages
 • Expensive Investment ($3000/ac)
 • Needs to be removed or “rolled back” seasonally
 – Soil may become anaerobic in wet conditions
 – Soil needs to “breathe”
 – Moved to apply nutrients
 • Difficult to apply nutrients
 • Mice
 • Soil heating
Use of Living Ground Covers

- Must not compete with tree during periods of need (especially spring and fall)
 - *Fruit trees are not very competitive!*
- Must be effective at improving soil condition (nutrition, aeration, etc.)
- Must be effective at eliminating competitive weeds
Living Ground Covers

It has been observed that living ground covers:

- Spring and summer grasses compete with fruit trees:
 - Fruit trees are very “weak” competitors for nutrients and soil oxygen
- Understory legumes may fix N, but:
 - Use K and can cause K deficiencies
 - May release N when the tree can not use
- There may not be any nutrient movement of nutrients fixed in the drive row into the orchard root system
- Living Mulches provide habitat for beneficial insects
- Living Mulches can alter orchard microclimate
General Observations

Competitive Vegetation and Tree Survival

- SP significantly reduced competitive vegetation, followed by WC
 - GC stimulated some vegetation
- No significant effect of nutrient source on competitive vegetation
 - Although least vegetation in no-nutrient control
- MB resulted in significant rodent damage and tree loss (~40%); required trapping
- SP resulted in significant tree loss; possible anerobiosis and related maladies; sensitivity to late winter injury
- Overall tree survival ranges from 60-77%
 - Additional losses to fireblight, other damage, etc.
Observations on Pest Management

Disease Management
- Using highly resistant CV
 - No infection of scab, cedar apple rust, mildew
- Used lime-sulfur, sulfur and some copper as preventatives
- Orchard sanitation

Fireblight
- Although ‘Enterprise’ has resistance, not complete.
 - Some infection in 3 high infection years
 - Had to treat; have used antibiotics
 - Missed some preventative treatments
Observations on Pest Management

- Control of codling moth and oriental fruit moth
 - Good; low pressure
 - Control methods
 - mating disruption, IPM and targeted sprays
- Plum Curculio
 - A work in progress
 - A significant problem
 - Control methods
 - Attract, bait, and kill strategies
 - Surround®; marginal effect
- Scale – Became a problem
 - Requires multiple dormant oil applications
 - Monitor for crawler stage and apply summer oil, trunk directed, and/or other sprays to control