Maple Diseases & Insect Pests

Diseases

Leaf Scorch: On maple (Acer species) trees a number of problems cause symptoms that are generally classified as leaf scorch. Scorch symptoms are light brown or tan dead areas between leaf veins or around the leaf margins. Occasionally the leaf margins are yellow or chlorotic. Scorch symptoms tell us that one or more of the following factors are affecting the tree:

- Physiological leaf scorch is the most common. It is caused by dry weather, combined with wind and high temperatures. When trees do not get enough water they will scorch. The symptoms are on all parts of the tree or only on the side exposed to sun and wind. Scorches due to dry soil may be overcome by proper watering.
- A response to an undesirable soil contaminant, such as salt (applied to roads for wintertime ice control), accumulation of fluorides in containerized soil mixes with perlite, or high levels of phosphate fertilizers.
- A reaction to a vascular pathogen, either fungal or bacterial.

Anthracnose: This disease is caused by the fungus Aureobasidium apocryptum. Leaves and buds may turn brown and die, followed by twig and branch dieback. Infected trees may be deformed with crooked and angular branches or witches’ brooms (clusters of shoots growing from one area of a branch). This disease is most severe during wet weather.

Prevention & Treatment: The most effective control is to replant with resistant trees. Spraying three times at two-week intervals with a copper-based fungicide, mancozeb, chlorothalonil, or thiophanate methyl starting when the leaves begin to unfurl in spring will provide control (see Table 1 for specific products). Read and follow all directions on the label.

Anthracnose of maple (Aureobasidium apocryptum). Photo by Paul Bachi, Bugwood.org

Bacterial Leaf Scorch: This disease is caused by the bacterium Xylella fastidiosa. Symptoms often start out as a marginal chlorosis or yellowing of the leaves before they fade to a drab green or brown color. Presumably the symptoms develop because of water stress within the water conducting vessels. Diseased trees lose vigor, and branches or entire trees may eventually die. The symptoms are most noticeable in late summer to early fall, following extended periods of drought. The bacteria are transmitted by leafhoppers and vegetatively through grafts and cuttings.

Prevention & Treatment: In general, practices that encourage root development and root function are recommended. Incorporate organic soil amendments into the soil to improve aeration and drainage of clay soils or to improve the water holding capacity of sandy soils. Irrigate during
periods of drought. The disease has been suppressed by oxytetracycline injections, but not cured. A certified arborist should be contacted if chemical control is needed.

Phyllosticta Leaf Spot: This disease, also known as purple eye, is caused by the fungus *Phyllosticta* spp. On the leaves, spots appear with pale yellow centers and purple borders. The spots are irregularly round and 1/4 inch in diameter. Black fruiting bodies of the fungus develop in a circle in the centers of the spots. These fruiting bodies occur in greater numbers on the upper leaf surface. Severe infection can result in partial defoliation of the tree. Often the disease goes unnoticed until leaf accumulation occurs under the tree.

Prevention & Treatment: The fungus survives the winter in fallen leaves. In the spring spores are produced and dispersed to the new leaves of susceptible trees. Rake up all fallen leaves. Fertilization and watering may help to reduce the disease. ‘Autumn Flame’, ‘Tilford’ and ‘Gerling’ red maple varieties are relatively resistant to leaf spot. Spraying three times at two-week intervals with a copper-based fungicide, mancozeb, chlorothalonil, thiophanate methyl, or triadimefon starting when the leaves begin to unfurl in spring will provide control (see Table 1 for specific products). Read and follow all directions on the label.

Tar Spot: Tar spot is caused by the fungus *Rhytisma acerinum*. Spots arise in late spring or early summer after leaves attain full size. At first the infected tissue is light green or yellow. Then, during late summer, raised, shining black, tar-like dots develop within the yellow spots on the upper leaf surfaces. The lower surface of a leaf beneath a large tar spot turns brown, but the surface beneath speckled tar spots remains yellow. Leaves with multiple spots may wither and drop prematurely, but seldom so early or in such quantities as to threaten the health of the tree.

This disease is more common in the forest, but may be seen in some landscape situations. Tar spots are among the most showy and least damaging foliar diseases.

Prevention & Treatment: The fungus survives the winter in fallen leaves. Rake up and discard the leaves in fall. Spraying three times at two-week intervals with a copper-based fungicide, mancozeb, or triadimefon starting when the leaves begin to
unfurl in spring will provide control (see Table 1 for specific products). Read and follow all directions on the label.

Insect Pests

Aphids: Aphids are soft-bodied insects that range from $\frac{1}{16}$ to $\frac{3}{8}$ inch long. They may be green, yellowish, pink, gray or black. They feed by piercing plant tissue and sucking plant sap. They prefer feeding on new growth in such areas as shoots, buds and the undersides of leaves. As they feed on plant sap, they excrete honeydew (a sugary material). The sooty mold fungus feeds on the honeydew, resulting in unsightly, dark fungal growth.

Woolly alder aphid (*Paraprociphilus tessellatus*). Bob Lepak, Bugwood.org

Woolly alder aphid (*Paraprociphilus tessellatus*) is gray to black in color. It gets its name from the fluffy, white wax found on its abdomen. It requires alder and silver maple to complete its life cycle. Occasionally, it is found on red maple. Colonies of these pests are obvious because of their white, fuzzy appearance. They are usually seen on leaves, twigs or bark. Although infested leaves shrivel and drop early, the pests cause little permanent damage. As a result of the honeydew, sidewalks and cars become sticky.

Prevention & Treatment: Several natural enemies, such as ladybird beetles (ladybugs) and lacewings feed on aphids. As much as possible, these predators should be allowed to reduce aphid populations. Controlling this pest on a large tree using chemicals is expensive and often not practical. Since little permanent damage results from woolly alder aphids, tolerating some damage is a good choice. As a result of their phenomenal ability to reproduce, aphids are very difficult to control with insecticides. Leaving one aphid alive can result in the production of a new colony very quickly. In addition, the use of insecticides kills the beneficial insects that normally keep aphid populations under control.

However, if natural predators do not reduce aphid populations sufficiently, the following foliar spray insecticides are recommended: cyfluthrin, lambda cyhalothrin, permethrin, bifenthrin, pyrethrin and neem oil. Treat when aphids appear and repeat at seven- to 10-day intervals, if needed. As an alternative, dinotefuran or imidacloprid can be applied as a drench around the root zone of aphid-infested plants and is systemically taken up by the root system for insect control (see Table 1 for specific products). As with all pesticides, read and follow all label directions and precautions.

Cottony maple leaf scale adults (*Pulvinaria acericola*) (Walsh and Riley, 1868). Photos by Nancy Gregory, University of Delaware
Scale: Many scale species-including *Pulvinaria acericola*, *Pulvinaria innumerabilis* and *Melanaspis tenebricosa* are pests of maples. Scales are unusual insects in appearance. They are small and immobile, with no visible legs. Scales vary in appearance depending on age, sex and species. Some are flat and appear like scales stuck to a plant, while others appear like white cottony masses. They feed on sap by piercing the leaf, stem or branch with their mouthparts and sucking. Their feeding can weaken or kill branches. Heavily infested trees are stunted with small flowers and leaves. Leaves may yellow and drop early.

Like aphids, soft scales, such as *Pulvinaria spp.*, also excrete honeydew. The growth of the sooty mold fungus on the honeydew results in leaves that are dark grayish-black. Armored scales, such as *Melanaspis tenebricosa*, do not excrete honeydew, as they feed differently than the soft scales.

Prevention & Treatment: A combination of various natural enemies, including ladybird beetles (ladybugs) and parasitic wasps, usually keeps scales under control. In small trees with light infestations, scale can be scraped off or infested branches can be removed and destroyed. In a large tree, controlling scale chemically is not always practical. The size of the tree, the need for specialized equipment and the cost may prohibit this approach. Adult scales are relatively protected from insecticides by their waxy covering. Their immature forms, called crawlers, are susceptible, however. If it is determined that chemical control is necessary, the recommended chemicals include the following: cyfluthrin, lambda cyhalothrin, bifenthrin, permethrin or carbaryl. Apply materials when crawlers appear and repeat in 10 days. Soft scales can be controlled by soil drenches with dinotefuran or imidacloprid. Drench applications are best made in the spring. Dinotefuran may move into trees more quickly than imidacloprid for faster control. See Table 1 for specific products. As with all pesticides, read and follow all label instructions and precautions.

Gall Makers: Maples often develop irregular growths or swellings known as galls on their leaves. Gall development is a reaction by the leaf tissue to feeding or egg laying by various mites (such as *Vasates quadripedes* and *Vasates aceriscrumena*) and insects (such as *Acericecis ocellaris* and *Cecidomyia ocellaris*). Galls vary greatly in appearance from wart-like bumps to spindle-shaped protrusions to felt-like patches on the leaf’s surface. Each insect or mite produces its own distinctive gall shape. Often the distinctive shape allows for identification of the pest. Galls typically develop in spring at about the time that leaves are expanding. Once the gall forms, the pest is protected inside the structure. When homeowners see these growths on the leaves of their maples, they often become quite concerned. It is important to remember that while unsightly, they do not cause permanent injury to a tree.

Prevention & Treatment: Since leaf galls do little, if any, long-term damage to the tree, control efforts are typically not needed or recommended. If a tree is small, the homeowner can handpick and destroy leaves before exit holes form to allow the release of the pest.

Granulate ambrosia beetle (*Xylosandrus crassiusculus*) larvae (Motschulsky, 1866).
Photo by Will Hudson, University of Georgia
Asian Ambrosia Beetles: Japanese maples are among the more common hosts of the granulate ambrosia beetle (*Xylosandrus crassiusculus*), with other hosts including styrax, ornamental cherry (especially Yoshino), pecan, peach, plum, dogwood, persimmon, sweetgum, magnolia, fig, Chinese elm and azalea. This pest is attracted not only to damaged, stressed or transplanted trees, but to seemingly healthy trees as well. The beetle becomes active in early March (or earlier), and the female beetles bore into trunks or branch wood of thin-barked hardwood trees. Once a tree has been attacked, it becomes more attractive to further attack. Often these trees are less than four inches in diameter.

![Granulate ambrosia beetle frass (*Xylosandrus crassiusculus*). G.Keith Douce, University of Georgia, Bugwood.org](image)

Visible symptoms include wilted foliage, as well as the toothpick-like strands of boring dust (frass) that protrude from these small, pencil-lead size holes. The Asian ambrosia beetle does not feed upon the wood of the host, but instead carries with it an ambrosia fungus, which grows within the galleries made by the beetle. This fungus serves as a source of food, and may partially be responsible for the death of the host plant.

Prevention & Treatment: Heavily infested plants should be removed. If only a few branches are infested they may be cut out. The life cycle takes approximately 55 days until the emergence of the next generation of beetles, so prompt removal or burning of the wood is important. Protective sprays on other susceptible plants may reduce their spread. Permethrin may be used as a trunk and scaffold limb spray beginning in March (see Table 1 for specific products). Thoroughly wet the bark. Multiple treatments may be needed during a season. Research indicates that spraying the infested trunks with permethrin may cause the beetles to leave the galleries they have already created. Since the beetles do not consume the host plant material, dinotefuran and imidacloprid systemic soil treatments are ineffective.

Other Problems

Girdling Roots: If a tree shows symptoms of poor vigor such as small leaves, death of small limbs, top dieback or leaf scorch, the condition could be due to girdling roots. This problem occurs when a root entwines around another large root or the base of the tree and prevents or hinders water and nutrient movement. Often girdling roots occur below ground level, indicated by a lack of root flare at the base of the trunk.

Prevention & Treatment: The portion of the root that is girdling the tree should be removed. The open wound can be treated with wound paint prior to covering with soil. Fertilization of the tree after root removal will aid in recovery.
<table>
<thead>
<tr>
<th>Insecticides & Fungicides</th>
<th>Examples of Brand Names & Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acephate¹</td>
<td>Bonide Systemic Insect Control</td>
</tr>
<tr>
<td>Carbaryl</td>
<td>Garden Tech Sevin Bug Killer Concentrate</td>
</tr>
<tr>
<td>Chlorothalonil</td>
<td>Bonide Fung-onil Concentrate</td>
</tr>
<tr>
<td></td>
<td>Ferti-lome Broad Spectrum Landscape & Garden Fungicide</td>
</tr>
<tr>
<td></td>
<td>Garden Tech Daconil Fungicide Concentrate</td>
</tr>
<tr>
<td></td>
<td>Hi-Yield Vegetable Flower Fruit & Ornamental Fungicide</td>
</tr>
<tr>
<td></td>
<td>Monterey Fruit Tree, Vegetable & Ornamental Fungicide</td>
</tr>
<tr>
<td></td>
<td>Ortho Max Garden Disease Control</td>
</tr>
<tr>
<td></td>
<td>Southern Ag Liquid Ornamental & Vegetable Fungicide</td>
</tr>
<tr>
<td></td>
<td>Tiger Brand Daconil</td>
</tr>
<tr>
<td>Copper-based Fungicides</td>
<td>Bonide Liquid Copper Concentrate</td>
</tr>
<tr>
<td></td>
<td>Camelot O Fungicide/ Bactericide Concentrate</td>
</tr>
<tr>
<td></td>
<td>Monterey Liqui-Cop Fungicide Concentrate</td>
</tr>
<tr>
<td></td>
<td>Natural Guard Copper Soap Liquid Fungicide Concentrate</td>
</tr>
<tr>
<td></td>
<td>Southern Ag Liquid Copper Fungicide</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>Bayer Advanced Vegetable & Garden Insect Spray Concentrate; & RTS</td>
</tr>
<tr>
<td>Dinotefuran</td>
<td>Ortho Tree & Shrub Insect Control Ready to Use Granules</td>
</tr>
<tr>
<td></td>
<td>Valent Brand Safari 2G Insecticide</td>
</tr>
<tr>
<td></td>
<td>Valent Brand Safari 20SG Insecticide</td>
</tr>
<tr>
<td></td>
<td>Gordon’s Zylam Liquid Systemic Insecticide</td>
</tr>
<tr>
<td></td>
<td>Gordon’s Zylam 20SG Systemic Turf Insecticide</td>
</tr>
<tr>
<td>Horticultural Oil²</td>
<td>Bonide All Seasons Spray Oil Concentrate</td>
</tr>
<tr>
<td></td>
<td>Ferti-lome Horticultural Oil Spray Concentrate</td>
</tr>
<tr>
<td></td>
<td>Monterey Horticultural Oil Concentrate</td>
</tr>
<tr>
<td></td>
<td>Southern Ag Parafine Horticultural Oil</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>Bayer Advanced 12 Month Tree & Shrub Insect Control Landscape Formula</td>
</tr>
<tr>
<td></td>
<td>Bonide Annual Tree & Shrub Insect Control</td>
</tr>
<tr>
<td></td>
<td>Ferti-lome Tree & Shrub Systemic Insect Drench</td>
</tr>
<tr>
<td></td>
<td>Gordon’s ImidaPro Systemic Insecticide</td>
</tr>
<tr>
<td></td>
<td>Gordon’s Tree & Shrub Insect Killer</td>
</tr>
<tr>
<td></td>
<td>Monterey Once A Year Insect Control II</td>
</tr>
<tr>
<td></td>
<td>Ortho Bug B Gon Year Long Tree & Shrub Insect Control</td>
</tr>
<tr>
<td>Insecticidal Soap³</td>
<td>Bonide Insecticidal Soap Concentrate</td>
</tr>
<tr>
<td></td>
<td>Espoma earth-tone Insecticidal Soap Concentrate</td>
</tr>
<tr>
<td></td>
<td>Natural Guard Insecticidal Soap Concentrate</td>
</tr>
<tr>
<td></td>
<td>Safer Brand Insect Killing Soap Concentrate</td>
</tr>
<tr>
<td></td>
<td>Schultz Garden Safe Insecticidal Soap Concentrate</td>
</tr>
<tr>
<td>Lambda Cyhalothrin</td>
<td>Spectracide Triazicide Insect Killer for Lawn & Landscapes Concentrate</td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Bonide Mancozeb Flowable</td>
</tr>
<tr>
<td></td>
<td>Southern Ag Dithane M-45</td>
</tr>
<tr>
<td>Malathion⁴</td>
<td>Bonide Malathion 50% Insect Control</td>
</tr>
<tr>
<td></td>
<td>Gordon’s Malathion 50% Spray Concentrate</td>
</tr>
<tr>
<td></td>
<td>Hi-Yield 55% Malathion Insect Spray</td>
</tr>
<tr>
<td></td>
<td>Martin’s Malathion 57% Concentrate</td>
</tr>
<tr>
<td></td>
<td>Ortho Max Malathion Insect Spray Concentrate</td>
</tr>
<tr>
<td></td>
<td>Southern Ag Malathion 50% EC</td>
</tr>
<tr>
<td></td>
<td>Spectracide Malathion Insect Spray Concentrate</td>
</tr>
<tr>
<td></td>
<td>Tiger Brand 50% Malathion</td>
</tr>
</tbody>
</table>
| Neem Oil | Bonide Neem Oil Fungicide, Miticide, Insecticide Concentrate
Ferti-lome Rose, Flower & Vegetable Spray Concentrate
Garden Safe Fungicide 3 Concentrate
Garden Safe Neem Oil Extract Concentrate
Monterey 70% Neem Oil Concentrate
Natural Guard Neem Concentrate
Southern Ag Triple Action Neem Oil |
| --- | --- |
| Permethrin | Bonide Eight Insect Control Vegetable Fruit & Flower Concentrate
Bonide Total Pest Control – Outdoor Concentrate
Hi-Yield Indoor/Outdoor Broad Use Insecticide Concentrate
Tiger Brand Super 10 Concentrate
Martin’s Vegetable Plus Concentrate |
| Pyrethrin | Bonide Garden Insect Spray Concentrate
Southern Ag Natural Pyrethrin Concentrate
Monterey Bug Blaster-O |
| Thiophanate-methyl | Cleary’s 3336-WP Turf & Ornamental Fungicide
Southern Ag Thiomyl Systemic Fungicide |

Important Notes: Chemical control of diseases and insect pests by sprays on large trees is usually not feasible since adequate coverage of the foliage with a pesticide cannot be achieved.

1. Acephate may damage red and sugar maples.
2. Horticultural oil may injure Japanese, amur and red maples. May not injure silver maple.
3. Insecticidal soap should not be applied to Japanese maples.
4. Malathion may cause slight injury to many maple species.
5. Neem oil may cause injury to Japanese maples.

Follow label directions for all insecticide rates (strength in solution).

Do not apply insecticidal soap, horticultural oil, or neem oil if temperature is greater than 85 ºF., and apply these three insecticides in early morning or evening.

Note: Pollinating insects, such as honey bees and bumblebees, can be adversely affected by the use of pesticides. Avoid the use of spray pesticides (both insecticides and fungicides), as well as soil-applied, systemic insecticides unless absolutely necessary. If spraying is required, always spray late in the evening to reduce the direct impact on pollinating insects. Always employ cultural controls first, then use less toxic alternative sprays for the control of insect pests and diseases. For example, sprays with insecticidal soap, horticultural oil, neem oil extract, spinosad, *Bacillus thuringiensis* (B.t.), or botanical oils can help control many small insect pests and mites that affect garden and landscape plants. Neem oil extract or botanical oil sprays may also reduce plant damage by repelling many insect pests. If soil applied insecticides are used, make applications immediately after flowering to reduce the amount of insecticide exposure to pollinating insects. For more information, contact the Clemson Home & Garden Information Center.

Pesticides revised by Joey Williamson, HGIC Horticulture Extension Agent, Clemson University, 10/16. Revised by Joey Williamson, HGIC Horticulture Extension Agent, Clemson University, 11/09. Originally prepared by Marjan Kluepfel, HGIC Horticulture Information Specialist; J. McLeod Scott, HGIC Horticulture Extension Agent; James H. Blake, HGIC Extension Plant Pathologist; and Clyde S. Gorsuch, Extension Entomologist (Emeritus), Clemson University, New 01/01.

This information is supplied with the understanding that no discrimination is intended and no endorsement of brand names or registered trademarks by the Clemson University Cooperative Extension Service is implied, nor is any discrimination intended by the exclusion of products or manufacturers not named. All recommendations are for South Carolina conditions and may not apply to other areas. Use pesticides only according to the directions on the label. All recommendations for pesticide use are for South Carolina only and were legal at the time of publication, but the status of registration and use patterns are subject to change by action of state and federal regulatory agencies. Follow all directions, precautions and restrictions that are listed.