CHAPTER 6B

Manure Spreader Calibration

John P. Chastain and Bryan Smith

Separated swine solids with a moisture content in the range of 70 to 96% can be land applied using a side discharge spreader. A rear-discharge spreader works well with solid manure that has a moisture content of 85% or less. Tank spreaders can be used to land apply liquid swine manure or lagoon water-sludge mixtures (94 to 99% moisture). All of these spreaders can be calibrated using the container method.

The basic information that must be recorded each time a calibration is performed is:

- description of the manure,
- moisture and nutrient content of manure,
- type of spreader used,
- settings of doors and gates that control the flow of manure (depends on spreader type),
- type and size (hp) of tractor,
- PTO rpm, and
- travel speed or engine rpm.

A representative sample should be taken from the manure that is being used to calibrate the spreading equipment. Have the sample analyzed for nutrient and moisture content and keep the report with the calibration record. The moisture content of the manure can greatly effect the manure calibration. Therefore, it is important that the calibration be done using manure with a “typical” moisture content.

South Carolina regulations require livestock and poultry producers to calibrate spreading equipment at least once a year. The purpose of this section is to describe the container method using an example and provide work sheets that can be used as the calibration record.

It should be noted that the objective of calibrating a spreader is to determine the application rate in terms of nutrients applied per acre. Knowing the application rate in gal/acre or tons/acre is not sufficient. Furthermore, if the amount of manure nutrients applied per acre exceed crop needs then the spreader must be recalibrated to provide a lower application rate. In many cases, it will take several spreader runs and experimentation with different ground speeds, and discharge settings before a suitable application rate can be determined. Once the combination of discharge setting and ground speed is determined that is close to the desired application rate the procedure should be repeated two more time. The average result for the final three runs will provide the value needed for implementation of a nutrient management plan.

Spreader calibration is not an exact process. Variations in the flow of the manure from the spreader, variations in ground speed, and variations in pressure in the hydraulic lines of the equipment can influence the results. Expect variations of 10 to 20%.
MANURE CALIBRATION RECORD USING
THE CONTAINER METHOD

General Information

<table>
<thead>
<tr>
<th>Farm Name:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person(s) Calibrating Spreader:</td>
<td>Manure Type:</td>
</tr>
<tr>
<td>Spreader Description:</td>
<td></td>
</tr>
<tr>
<td>PTO, rpm:</td>
<td>Gear:</td>
</tr>
</tbody>
</table>

Description of Outlet Settings (i.e. Outlet gate open 2 inches):

Example Diagram of Calibration Set-up

Show the number of containers used, the distance between each container and the centerline of the tractor and spreader as manure was applied. Also, give each container a number as shown below. Record container dimensions. It is important that all containers and the space between containers be the same.

Diagram for Rear Discharge Spreader

Centerline of tractor and spreader

1

6 ft

6 ft

6 ft

6 ft

5

31 ft

Container size: 16.5 inches x 11.5 inches

Container area = 189.75 sq. inches or 1.32 sq. ft.
Diagram of Calibration Set-up

Show the number of containers used, the distance between each container and the centerline of the tractor and spreader as manure was applied. Also, give each container a number as shown below. Record container dimensions. It is important that all containers and the space between containers be the same.

Container Information and Data

All of the containers should be the same. For example, if large round plastic pans are used then they should all have the same diameter and the same height. In this example, plastic rectangular containers were used.

Rectangular Containers

- dimensions: length = ________ inches, width = ________ inches
- Area = length × width = (________ × ________) ÷ 144 = ______ ft².

Example: 16.5 x 11.5 ÷ 144 = 1.32 ft²

Round Containers

- dimensions: diameter = ________ inches
- Area = (0.785 × diameter × diameter) ÷ 144 = ____________ ft².

Calculation of Manure Weight Per Area

The weight of each container must be determined and recorded as shown in the following table. The containers are weighted again after the manure is spread. The total weight of the container and the manure is recorded. The manure weight is the total weight minus the container weight. The manure weight per area is determined for each container by dividing the manure weight by the container area. This number is recorded in the right-hand column.
Example Data Table For Container Weight, Manure Weight, And Manure Weight Per Area

<table>
<thead>
<tr>
<th>Container Number</th>
<th>Container Weight</th>
<th>Total Weight</th>
<th>Manure Weight</th>
<th>Manure Weight/Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>300 g</td>
<td>358.9 g</td>
<td>(358.9 g – 300 g) = 58.9 g</td>
<td>(58.9 g ÷ 1.32 ft²) = 44.6 g / ft²</td>
</tr>
<tr>
<td>1</td>
<td>300 g</td>
<td>346.2</td>
<td>46.2</td>
<td>35 g / ft²</td>
</tr>
<tr>
<td>2</td>
<td>300 g</td>
<td>367.3</td>
<td>67.3</td>
<td>51 g / ft²</td>
</tr>
<tr>
<td>3</td>
<td>300 g</td>
<td>379.2</td>
<td>79.2</td>
<td>60 g / ft²</td>
</tr>
<tr>
<td>4</td>
<td>300 g</td>
<td>372.6</td>
<td>72.6</td>
<td>55 g / ft²</td>
</tr>
<tr>
<td>5</td>
<td>300 g</td>
<td>333.0</td>
<td>33.0</td>
<td>25 g / ft²</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average weight per container / ft² for all containers = 45 g / ft²
Average weight per container / ft² for containers in effective swath = 55 g / ft² (average of 2, 3 & 4)

Data Table For Container Weight, Manure Weight, And Manure Weight Per Area

<table>
<thead>
<tr>
<th>Container Number</th>
<th>Container Weight</th>
<th>Total Weight</th>
<th>Manure Weight</th>
<th>Manure Weight/Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example</td>
<td>300 g</td>
<td>358.9 g</td>
<td>(358.9 g – 300 g) = 58.9 g</td>
<td>(58.9 g ÷ 1.32 ft²) = 44.6 g / ft²</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average weight per container / ft² for all containers =
Average weight per container / ft² for containers in effective swath =
Uniformity of Application and Determination of Effective Swath Width

The uniformity of application and the effective swath width can be easily determined by comparing the manure weights in each container. In the example, it can be seen that the 3 containers closest to the tractor, containers 2, 3, and 4, contain more manure per square foot than the two outside containers (1 and 5). The effective swath is the “strip” of manure behind or to the side of the spreader that is relatively uniform. The effective swath is defined as ending when the manure applied per square foot decreases from the average application rate by 40 % or more.

In the sample data set the average amount of manure in all 5 containers was 45 g / ft². The amount of manure collected in container 1 was 22% lower than the overall average, which is not considered to be excessive. However, the amount of manure collected in container 5 was 55% lower than the average of 45 g/ft². Therefore, manure would be spread more uniformly if the effective swath is defined as the width from container number 2 through container 4. The effective swath width is equal to the width of three containers plus 12 ft. The total width = 16 ft in this example and two passes with the manure spreader would overlap about 7.4 ft.

Calculation of Application Rate in Tons Per Acre

Calculate the average application rate is to determine the average weight of manure applied per square foot using all of the containers within the effective swath. Therefore, if 3 containers are used then add up the weights for each container and divide by 3. The overall average weight of manure per square foot in the effective swath for the example is 55 g/ft².

Use the following conversion factors to calculate the application rate in tons/acre.

One ton of manure per acre is equal to:

0.046 lb / ft², 0.736 oz / ft², or 20.82 g / ft².

These are called application rate conversion factors. Use the one that corresponds to the unit that was used to weigh the manure (either lb, oz, or g).

Use the following formula to calculate the application rate in tons per acre.

\[
\text{Average Manure Weight} / \text{ft}^2 + \text{Application Rate Conversion factor} = \text{Tons per Acre}
\]

Example:

\[
\frac{55 \text{ g/ft}^2}{20.82 \text{ g/ft}^2} = 2.6 \text{ tons per acre}
\]

Therefore, the average application rate is 2.6 tons per acre within the effective swath for the calibration example.

If it is desired to determine the average application rate for all 5 containers use the equation given above with the overall average manure weight per square foot. For the example, the
overall average was 45 g/ft² and the application rate associated with an effective swath of 31 ft was 2.2 tons/acre. This value is 15% lower than the application rate within an effective swath of 16 ft.

Calculation of Nutrient Application Rates

Once the amount of manure that is spread per acre is known then it is easy to determine the amount of plant available nitrogen, P₂O₅, or K₂O that will be applied per acre. Use the following equations to calculate the nutrient application rates. For the example, it will be assumed that the manure contains 45 lb PAN/ton, 69 lb P₂O₅/ton, and 46 lb K₂O/ton.

For PAN

\[
\text{lb PAN/ton} \times \text{tons of manure / acre} = \text{lb PAN/acre}
\]

Example:

\[
45 \text{ lb PAN/ton} \times 2.6 \text{ tons/acre} = 117 \text{ lb PAN/acre}
\]

For P₂O₅

\[
\text{lb P₂O₅/ton} \times \text{tons of manure / acre} = \text{lb P₂O₅/acre}
\]

Example:

\[
69 \text{ lb P₂O₅/ton} \times 2.6 \text{ tons/acre} = 179 \text{ lb P₂O₅/acre}
\]

For K₂O

\[
\text{lb K₂O/ton} \times \text{tons of manure / acre} = \text{lb K₂O/acre}
\]

Example:

\[
46 \text{ lb K₂O/ton} \times 2.6 \text{ tons/acre} = 120 \text{ lb K₂O/acre}
\]