What are the benefits of measuring soil moisture?

Measuring soil moisture is one way of determining when crops need irrigation and how much irrigation water to apply. This could save water, use less energy, reduce pumping cost, increase yields, and help protect the environment from excess irrigation. Excess irrigation will increase cost of production and can have negative environmental effects such as runoff, waterlogging, and leaching of soil nutrients and other chemicals that can eventually contaminate water sources and reduce yield. Although it is common for farmers to estimate soil moisture by the hand-feel method (Figure 1), soil moisture can be measured or monitored more effectively and accurately using a variety of commercially available soil moisture monitoring systems. Some of these systems provide continuous data collection.

What is a soil moisture monitoring system?

A soil moisture monitoring system is a combination of devices that can perform one or more of the following functions: sense soil moisture, read/store data, transmit data to a computer, organize, help visualize and interpret soil moisture data (Figure 2).

A soil moisture monitoring system can, therefore, be divided into the following five components: (1) the soil moisture sensing probe, (2) the power supply, (3) the data collection device, (4) the data transmitter, and (5) the base station (Figure 3).
What is the soil moisture sensing probe?

The soil moisture sensing probe or soil moisture sensor is a device that measures or estimates how much water the soil contains at a given depth and time. The soil moisture probe/sensor does not measure soil moisture directly, but usually derives soil moisture indirectly by measuring other soil properties that depend on soil moisture, such as soil water tension or the ability of soil to conduct or store electricity. There is great variety of soil moisture probes/sensors on the market today. They range from single soil moisture sensors (Figure 4) that are buried in the ground at the required depth, to soil moisture probes with multiple sensors at different depths (Figure 5), which are installed via an access tube. The selection of the type of probe to use depends on the crop, cost, preference, availability, ease of installation, etc.

What is the power supply?

Since most current soil moisture monitoring systems rely on electronics, a reliable source of electricity is required. Most systems have been designed to operate in remote locations (like in the middle of a corn field) where AC electricity is not available. Therefore, they usually operate with DC power supplied by batteries. Some systems can operate for months using small AA batteries, but others need more power and rely on larger batteries that are recharged with solar panels (Figure 6).

What is the data collection device?

Although some sensors like tensiometers have a manual readout (Figure 7) to directly read the soil moisture (tension), nowadays most soil moisture probes produce an electronic signal (such as resistance or voltage) that changes with soil moisture, which cannot be seen directly.
Therefore, some kind of data collection device is needed to obtain the electrical output from the sensor(s) and convert it to soil moisture or some other unit that is meaningful to the user. Data from the sensor can be collected manually or automatically. For manual data collection, portable readouts are usually employed (Figure 8) and the user has to go to the field and connect the portable readout to the soil moisture probe installed in the field.

![Portable readout for moisture sensors.](image1)

For applications requiring frequent data collection, or just for convenience, data collection can be automated using an electronic datalogger (Figure 9). A datalogger is just a type of computer that can be connected to the sensors and can be programmed to collect, store, and/or transmit data at regular time intervals ranging from seconds to days. Usually, the logger stores the date and time corresponding to the soil moisture reading from each sensor. Some dataloggers have a readout to look at the data on-site and others do not.

What is the data transmitter?

Once the datalogger collects and stores the soil moisture data, the next step is to send the data to a computer where it can be further processed. If the data is not needed to make decisions at the same time as it is being collected (in real time), an option is to store the data in the datalogger and periodically (such as weekly) the user can connect a computer to the datalogger and download the data to the computer. If the data is needed in real time, the data can be transferred to a computer using either wired or wireless communication. Wired communication is just linking the logger and the

![System showing a datalogger.](image2)

![Radio transmitter.](image3)
computer with a wire connection, which could be adequate for short distances. In most cases, however, a wireless communication is more practical.

Wireless communication can be done either via satellite, radio or cell phone. Each of these types of communication options would require special equipment, such as a radio transmitter (Figure 10), a satellite transmitter or a cell phone modem. One or several repeater antennas are also required to transmit the signal, depending on whether or not there is line of sight between the datalogger and the computer, and the distance involved. For satellite and cell phone data transmission, the user normally would need to subscribe to a monthly data plan, which represents an on-going cost in addition to the initial investment cost of purchasing the system.

What is the base station?
The base station is usually a computer equipped with a data receiver of some type, such as a modum, radio, or satellite receiver. The computer is also equipped with some type of specialized software needed to communicate with the datalogger to download the data. Some systems also send the data via the internet to an external website, from which the base station can obtain them via the internet. Each company selling soil moisture monitoring systems usually have their own software. The software helps the user download, organize, view (Figure 11), interpret the data and create reports, among other functions.

What is the investment cost?
The cost of of a soil moisture monitoring system can vary significantly depending on the company, the number of sensor depths required, the data transmission option (manual, radio, satellite …), etc. For comparison, Table 1 shows the cost of setting up a system to monitor three soil depths and collect the data either manually, continuously logged, or transmitted via radio or satellite; and the yearly cost of the data communication plan for two common soil moisture sensor types (Watermark and Decagon). These are just the cost to measure one site in the field. Some fields with different soil types may require more than one measurement site.

Table 1. Comparative cost of two soil moisture monitoring systems ($US in 2013, measuring 3 soil depths).

<table>
<thead>
<tr>
<th>Options</th>
<th>Watermark</th>
<th>Decagon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation tool</td>
<td>$139</td>
<td>$804</td>
</tr>
<tr>
<td>Manual measurement</td>
<td>$303</td>
<td>$1,074</td>
</tr>
<tr>
<td>Data logged automatically</td>
<td>$570</td>
<td>$1,845</td>
</tr>
<tr>
<td>Data transmitted via radio</td>
<td>$1,790</td>
<td>$1,682</td>
</tr>
<tr>
<td>Data transmitted via satellite</td>
<td>$2,395</td>
<td>$200/year</td>
</tr>
<tr>
<td>Cost of transmitting data</td>
<td>$279/year</td>
<td>$200/year</td>
</tr>
</tbody>
</table>

The mission of the Irrigation Water Management program at Clemson University is to develop advanced irrigation technologies and educate farmers on how to improve irrigation water management to increase farm profitability and environmental sustainability in South Carolina.

For more irrigation information contact:

Dr. José Payero
Irrigation Specialist
Office: 803-284-3343 ext 229, Cell: 803-508-1617
jpayero@clemson.edu

Dr. Ahmad Khalilian
Office: 803-284-3343 ext 230, Cell: 803-300-4304
akhlln@clemson.edu

Dr. Gilbert Miller
Office: 803-284-3343 ext 225, Cell: 803-793-6614
gmlr@clemson.edu

Edisto Research & education Center
64 Research Road
Blackville, SC 29817

Figure 11. Sample soil moisture data for different depths plotted by computer software.