Clemson University’s Department of Mechanical Engineering is now accepting applications for its Master of Science (M.S.) and Doctor of Philosophy (Ph.D.) degrees. Classes are offered every semester.

Designed for Working Professionals

The ME graduate program is designed for working engineers, with classes generally held online and in-person at the Zucker Family Graduate Education Center in North Charleston during the late afternoons and evenings. Students are not required to travel to Clemson’s main campus.

Courses are offered each semester in a traditional face-to-face classroom format and in “real time” streaming to and from Clemson’s main campus. Clemson faculty lecture from Clemson and from Charleston on a rotating basis to ensure students on both campuses have in-person contact. Recorded lectures are available and cloud archived for 24/7 retrieval, allowing students to make progress and view class lectures regardless of job or personal obligations. Faculty hold scheduled office hours in order to be available to meet with students virtually and one-on-one in North Charleston.

The Program

Graduate degrees in mechanical engineering are technical degrees that build on a strong undergraduate background in mechanical engineering. Subject areas covered include experimental, analytical and computational work ranging from manufacturing systems to material processing; mechanics of materials to thermodynamics; dynamic systems and controls to engineering design practice and methods.

Students can elect to engage in a research-oriented graduate degree or enroll in a coursework only option with no thesis required. Both degrees are identical in requirements and expectations to the programs currently offered on Clemson’s main campus.

For more information or to apply, visit clemson.edu/cecas/charlestondegrees.
For the non-thesis M.S. program, students are required to take 11 courses (three credits per course). Graduate courses are available in the fall and spring semesters and summer term.

Research Opportunities

Ph.D. students enrolled in this program will have the opportunity to undertake research projects with the Mechanical Engineering faculty, either based at the Charleston facilities or remotely at Clemson. This includes research in Clemson University’s SCE&G Energy Innovation Center in Charleston, which is among the world’s most advanced energy systems testing and research facilities. Among other capabilities, the Energy Innovation Center is capable of full-scale highly accelerated mechanical and electrical testing of advanced drivetrain systems for wind turbines.

Prerequisites

Prospective graduate students must have a strong undergraduate background in mechanical engineering. Exemplary applicants with an undergraduate degree in physics or industrial, electrical or civil engineering may become eligible for the degree after taking some additional undergraduate prerequisite courses in order to be prepared to successfully navigate the program. Students should discuss their situation with a Clemson mechanical engineering graduate school adviser.

Application Process

Students are not required to take the GRE to be admitted into the non-thesis M.S. program. Instead, they should register as “non-degree students.” Once a student has successfully passed the first course taught through the Department of Mechanical Engineering, the transition to regular “part-time graduate student” status can be made.

Before moving forward in the application process, prospective students are highly encouraged to contact the Mechanical Engineering graduate program coordinator to discuss the program requirements, curriculum, expectations and admission process.

To Learn More

Contact Trish Nigro at 864-656-0999 or pnigro@clemson.edu. Website: clemson.edu/cecas/charlestondegrees

Here, Dr. John R. Saylor is conducting a drop levitation experiment with his doctoral student, Weiyu Ran.

Professor Saylor investigates the use of ultrasonics and water sprays for the elimination of particulate pollutants from diesel exhaust. In this work ultrasonics are used to force drops and pollutant particles to combine, facilitating their removal. Saylor also uses ultrasonics to levitate drops, which allows him to study the physics of how particles and drops interact.