Suggestions for Teaching Observation: an OTEI Guide

Peer teaching observations are an important piece of a multi-faceted evaluation of teaching (to include student evaluations, analysis of course materials and student learning products, and self-evaluation). Observations are best approached by using a clear method and by keeping a record of the class observed (including online courses). While protocol use is not necessary, understanding the options listed in a protocol and being familiar with the process can be very helpful to one’s own practice of peer observation. NOTE: observational protocols list a multitude of possible pedagogy choices. Sheer quantity does not equate with “good” teaching. Using one type of pedagogy over another does not automatically equate to “good” teaching. Instead, the protocol is simply a record that needs analysis and interpretation.

For a more complete introduction, see the “overview of teaching observations” handout.

CONTENTS

- Observation Cover Sheet
- Observation Worksheet with Student Engagement defined
- Reporting out
- Analysis: Post-observation
- TDOP+ This is a modification of the TDOP protocol from the Wisconsin Center for Educational Research, with supplemental codes to recognize additional aspects. Additional codes are noted by a “+”
 - +Foundations for new instructors (including TAs).
 - Strategies
 - Technology Use
- Attribution
Please fill in contextual information below. Some of this information requires a meeting/interview with the observed instructor, which is optional but recommended.

Observer name: Date and time of observation:

Instructor name:

 Appointment type:

 Years teaching this course:

Course Characteristics
 Class name and level:
 Department:

Course/Session Goals and plans

1) Goals for the observed class:

2) Planned activities for the observed class:

3) How the class fits into the larger course (e.g., exams, special activities):

4) How instructor uses data, if at all, to refine and/or inform teaching:

- Please describe the physical layout of the room (e.g., type of student seating, technology directly accessible by students, instructor on dais, number of projection screens and their positioning, etc.) or attach a diagram (see below)

If you are using codes, the Code Definitions & Observation Instructions are below

A quiet reminder - Remember that what you as a reviewer are doing in the classroom has the potential to trigger behaviors by students during the class period. Please be thoughtful of that point and stay as silent as possible during class.
Directions: Use of an observational sheet. TDOP recommends coding behavior observed during every two-minute interval. If not using the protocol in this way, use the sheet below and note the time at regular intervals (suggestion, 10-minute intervals).

Attach diagram of room AND/OR screenshot of synchronous online session. Use this diagram to note movements around the room, configurations of student seating, and to record which students interact with the instructor.

Note # of students in the session:

At the end of the observation, circle overall level of engagement: VHI HI MED LO (see definitions)

Class Session (f2f or online synchronous)

<table>
<thead>
<tr>
<th>Note time (approx. every 10 minutes at least)</th>
<th>This space is for entering codes, plus any observational notes for whole class (instructor and student actions). You can use the class diagram (see sample below) to mark student/teacher behaviors (questions, movements around room, etc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Student Engagement

VHI Very High: More than 75% of the students in the immediate area of the observer are either (a) actively taking notes, or (b) looking at the instructor/course materials or (c) involved in an activity.

HI High: Between 50% and 75% of the students in the immediate area of the observer are either (a) actively taking notes, or (b) looking at the instructor or (c) involved in an activity.

MED Medium: Between 25% and 50% of the students in the immediate area of the observer are either (a) actively taking notes, or (b) looking at the instructor or (c) involved in an activity.

LO Low: Less than 25% of the students in the immediate area of the observer are either (a) actively taking notes, or (b) looking at the instructor or (c) involved in an activity.
+Reporting out:
A peer observation is like joining a research project, with the hypothesis that the instructor is conducting an effective class. How do you help the instructor show this? Your observational notes and your analysis are used to create a short report. The record can be shared with the instructor if that person wishes and at least should be kept with your office records.

When creating a report, meet with the instructor to review your draft report, check for accuracy, and discuss assumptions. This meeting can help an instructor improve but it is suggested that practices to improve should be noted officially only if they are hindering student learning. A final report can be a summary letter which could include bullet points or a chart on strong practices you noted.

+Analysis: Post-observation
These questions are pre- and post-class questions to consider based on the information provided before the observation and following it, through discussion with the instructor. Use the syllabus and other materials, discussion with the instructor, and the observational codes to inform analysis. Questions to address for analysis can include:

1. How well-prepared is the instructor for this session?

2. How does the instructor demonstrate a firm knowledge of the subject? And is the content appropriate, accurate and correct? Does the instructor provide effective reasoning for difficult concepts and check understanding?

3. How does the session reflect some aspect of the course objectives? Are learning activities reflective of and tied to course content and learning objectives?

4. How are instructional activities and methods employed to engage students in their learning process? Do these reinforce active engaged learning? And does the instructor use activities, resources, illustrations, and examples (such as worked examples) effectively?

5. How does the instructor seem to demonstrate a respectful attitude toward the students? And how does the instructor recognize student confusion?

6. How does the instructor provide appropriate guidance, feedback and positive reinforcement (including student assignments or presentations)?

7. To what degree do the students appear to be actively engaged in class? Do students frequently ask questions in class to clarify learning? And to what degree do students stay on task?
Protocol Codes
Using this protocol as intended requires training as each 2 minute interval of teaching is coded. If you are using the protocol simply as a reference for observation, an observational template sheet is included above.

+Foundational (teacher behaviors that facilitate learning)

+Presence
V Voice: voice is loud, clear, understandable, paced evenly
P Politeness/Relationships: students are addressed with use of polite language (please, thank you, and other forms, including non-verbals)
EC Eye Contact: use of eye contact with individuals, as well as around the room, equally
B Body Language: neutral or positive non-verbals, instructor faces students majority of the time, “personal space” is acceptable for an American audience (not too close or too far away), neutral touching is not recommended/may be misunderstood. Potentially distracting gestures are limited or absent.
EN Engagement: verbal or non-verbal positive reinforcement is used with students, language is constructive and positive.
CL Clarity: wording by instructor is clear, clarifying for students is done as needed.

+Management
F Facilitation Skills: verbal prompts to engage students (i.e. what do you think? Could you say more?), checking for understanding, checking for clarity (when students ask questions, encouraging engagement (use of student names, use of wait time, gentle encouragement of quieter students to comment)
In Interaction: use of names, moving around the room—which small or, in larger classes, in the aisles.
CM Classroom Management: classroom management basics such as greeting/addressing students and checking on progress of students; addressing disruptive student behaviors with clear intervention (behaviors such as use of technology, for example, and other evidence of students off task); giving clear instructions for tasks. (Instructor may refer to syllabus policies or school policies as needed.) Individual disruption is handled without individual embarrassment in front of class, as possible.
T Use of Time: the class session has a clear start, clear segments of time, clear end. Class is neither rushed nor unfocused/with empty time. (Use of time is evidence of pre-planning.)

Categories of Teaching Methods

Teacher-focused instruction (teacher is the primary actor)
L Lecturing: The instructor is talking to the students and not using visuals, demonstration equipment, actively writing, or asking more than 2 questions in a row in a Socratic manner.
LW Lecturing while writing: The instructor is talking to the students while actively writing on a chalkboard, transparencies, digital tablet, or other material. The instructor must either be writing or
referring to what they are writing (or have already written). This code also captures real-time drawing of graphics (e.g., molecular structure, physiological processes), and if the use of visual representations is of interest, this should be included in the notes section. (Note that this code also captures writing/drawing in front of students without speaking, as a separate code for silent writing was deemed superfluous).

LVIS Lecturing from pre-made visuals: The instructor is talking to the students while referencing visual aids, such as slides, transparencies, posters, or models (e.g., plastic model of molecular structure, examples of sedimentary rocks, multi-media).

The instructor must be referring to the topic contained in the visual, but the visual serves only as a reference point for the material and not as a live demonstration of phenomenon.

LDEM Lecturing with demonstration of phenomena: The instructor actively uses equipment (e.g., lab equipment, computer simulation) to convey course content. The objects must be in active use in relation to the topic and must be used for more than a simple reference point (e.g., “here is an example of a sedimentary rock”) to demonstrate a process or phenomenon in class (e.g., “here is how sedimentary rock erodes over time” while physically demonstrating this process).

SOC-L Socratic lecture: The instructor is talking to the students while asking multiple, successive questions to which the students are responding. Student responses are either guiding or being integrated within the discussion. A minimum of 2 relevant student responses is required to use this code. (Note that SOC-L can be co-coded with other types of lecturing, such as LW, if the instructor is doing both writing AND interspersing his/her talk with questions).

WP Working out problems: This code refers to the instructor working out computations or problems. These can include balancing a chemical equation, working out a mathematical proof, or designing equations or Punnett squares, etc. The intent of the code is to capture the working through of some sort of problems in front of students. (If the computations/problems are on a slide and the instructor is actively working through problems, then this will be co-coded with LVIS. If this process is being written out, then this code will be co-coded with LW, and if students are being asked to participate in the problem-solving process via questions, code SOC-L).

IND Individualized instruction: The instructor provides instruction to individuals or groups and not the entire class. This often occurs while the instructor is roaming the classroom, but students or small groups may also approach the instructor. This code is usually co-coded with SGW or DW (see below). It is important to recognize that this code should not be used to classify the types of student-teacher interactions that are occurring in a large class setting – instead, use this code only when students are engaged in SGW or DW and the instructor is directly interacting with one or more students.

MM Multimedia: The instructor plays a video or movie (e.g., Youtube or documentary) without speaking while the students watch. If the instructor is talking over a video, movie, or simulation, then co-code with LVIS.

A Assessment: The instructor is explicitly gathering student learning data in class (e.g., tests, quizzes, or clickers). Other methods of formative feedback can be noted such as “minute” writing, listing ideas, or writing down a question, which are collected; apps can be used to collect formative feedback as well).

Student-focused instruction (students are the primary actor)

SGW Small group work/discussion: Students form into groups of 2+ for the purposes of discussion and/or to complete a task.

+SGW/V Small group work/visual: with visually evident work such as work on a whiteboard or paper or use of technology

+SGW/M Small group work/movement: students stand and use body movement to complete the work, such as role play, acting out, demonstration.

DW Deskwork: Students complete work alone at their desk/chair.

SP Student presentation: Groups or individual students are giving to the class or are otherwise acting as the primary speaker or instructor in the classroom. In this instance, only select this code and none others as long as the primary instructor is not actively taking the lead in teaching the class.
+IA **Individual Accountability:** any work done in class that holds individual students responsible, such as defined roles for work (teacher observation determines accountability), collected work with contributions by all students (verifiable), random “cold calling” if students are expecting to be called, or work followed by individual quiz or feedback from individual student.

Student-Teacher Dialogue

Teacher-led dialogue

IRQ Instructor rhetorical question: The instructor asks a question without seeking an answer and without giving students an opportunity to answer the question.

IDQ Instructor display question: The instructor poses a question seeking information. These questions can: seek a specific fact, a solution to a closed-ended problem, or involve students generating their own ideas rather than finding a specific solution.

ICQ Instructor comprehension question: The instructor checks for understanding (e.g., “Does that make sense?”) and pauses for at least five seconds (+more is recommended), thereby indicating an opportunity for students to respond.

Student-led dialogue

SQ Student question: A student poses a question to the instructor that seeks new information (i.e. not asking to clarify a concept that was previously being discussed) and/or clarification of a concept that is part of the current or past class period.

SR Student response to teacher question: A student responds to a question posed by the instructor, whether posed verbally by the instructor or through digital means (e.g., clicker, website).

PI Peer interactions: Students speaking to one another (often during SGW, WCD, or SP).

+PI/PS Pair-Share: Use of the particular method of “pair-share” or “think-pair-share”

+Student-Teacher-Student Dialogue

+WGD Whole group dialogue: teacher and students share in facilitation of a whole group dialogue, where meaning is co-created (constructed by the group rather than “led” by instructor). While not all students need to participate, the potential for all to join in is there in the group dynamic. Often, discuss is in a circle formation.

Other Teaching Strategies

HUM Humor: The instructor tells jokes or humorous anecdotes; this code requires laughter from at least a couple of students.

ANEX Anecdote/example: The instructor gives examples (either verbally through illustrative stories or graphically through movies or pictures) that clearly and explicitly link course material to (a) popular culture, the news, and other common student experiences, or (b) widely recognized cases or incidents that illustrate the abstract (both types are co-coded with CNL).

ORG Organization (+transitions, connections): The instructor writes or posts an outline of class (i.e., advance organizer) or clearly indicates a transition from one topic to the next verbally or through
transitional slides. This transition from one topic to another can indicate a change in topics within a single class or from a previous class to the present class. These transitions must be verbally explicit statements to the class (e.g., “Now we’re moving from meiosis to mitosis”) as opposed to ambiguous statements such as “Now we’ll pick up where we left off on Monday.” This may also include statements concerning how concepts covered in different portions of the class (e.g., lecture, homework and lab) may overlap.

EMP Emphasis: The instructor clearly states that something is important for students to learn or remember either for a test, for their future careers, or to just learn the material well.

+PL Purposeful Learning: The instructor refers to student objectives/learning outcomes that are in the syllabus or attached to the unit/class session. Connections with SLOs (student learning outcomes) are made at the start, during, or at the close of the lesson. Reference to other outcomes may be made—i.e. departmental, professional. Students are prompted to think about their learning outcomes.

AT Administrative task: The instructor is discussing/distributing exams, homework, or other non-content related topics. (+moved from the subset above)

+TI Teacher Instruction: an administrative task whereby the instructor gives SGW or DW instructions to students, organizes groups, describes the task, clarifies the product, gives rationales

+Additional Dimensions of Learning and Teaching

Potential Student Cognitive Engagement

CNL Making connections to own lives/specific cases: Students are given examples (either verbally through illustrative stories or graphically through movies or pictures) that clearly and explicitly link course material to popular culture, the news, and other common student experiences. Students may also be given specific cases or incidents in order to link an abstract principle or topic (e.g., flooding) with a more readily identifiable instance (e.g., 2013 floods in Boulder, Colorado). For this code to be used, the observer will need to make a judgment that the specific case is something meaningful to students, such as a local historic item or location, or a widely recognized incident. In general, a high bar is required here that is based on specificity and salience to students, such that showing a picture of a sedimentary rock will not be sufficient for this code, but if the picture was of the Grant Canyon and named as such, it would be coded as CNL. This code will be particularly important in biology (e.g., Dolly the sheep) and geoscience courses.

PS Problem solving: Students are asked to actively solve a problem (e.g., balance a chemical equation, work out a mathematical equation/algorithm). This is evident through explicit verbal (e.g., “Please solve for X”) or written requests (e.g., worksheets) to solve a problem. This is coded in relation to closed-ended exercises or problems where the instructor has a specific solution or end-point clearly in mind.

+CASE Case Study: Students are given a case study to work through (usually open-ended, multiple solution)

CR Creating: Students are provided with tasks or dilemmas where the outcome is open-ended rather than fixed (e.g., students are asked to generate their own ideas and/or products rather than finding a specific solution). The task can be delivered verbally or in written form. This is coded in relation to open-ended exercises or problems where the instructor does not have a specific solution or end-point clearly in mind.

+G/S Gaming or Simulation experience: Students are involved in a game or in a simulation which has a complex cognitive task, with critical and creative thinking needed.
Difficult Concepts: Concepts that are complex and difficult are addressed by instructor through repetition of explanation, elaboration, additional examples/illustrations, and checking comprehension.

EVAL evaluation: evidence of activities that relate to higher order thinking in addition to PS and DC listed above, where students are evaluating.

Modeling: instructor models thinking/doing other than problem-solving, such as working a case study or applying a theory or process.

Instructional Technology

(Instructional technology is not in and of itself a teaching/learning strategy but noting what technology is used helps identify points of engagement.

- **WB Whiteboard/Chalkboard/Smart Board** used as whiteboard (+changed code from CB)
- **SB Smartboard**: full use of the Smart Board technology is demonstrated, such as notetaking, assessment, use of webpages, interactive pages, and student use of SB.
- **OP Overhead projector/transparencies**: including the document camera or a tablet as a doc camera
- **PP PowerPoint or other digital slides**
- **CL Clicker response systems**
- **D Demonstration equipment**: These could include chemistry demonstrations of reactions, physics demonstrations of motion, or any other material being used for the demonstration of a process or phenomenon. The objects must be in active use in relation to the topic. This can also include objects such as rocks being passed around a classroom.
- **DT Digital tablet**: This refers to any technology where the instructor can actively write on a document or graphic that is being projected onto a screen. This includes document cameras as well as software on a laptop—or tablet—that allows for writing on PDF files or a blank screen+.
- **M Movie, documentary, video clips, or YouTube video**
- **SI Simulation**: Simulations can be digital applets or web-based applications.
- **WEB Website**: Includes instructor interaction with course website or other online resource (besides YouTube videos). +Use Apps below—for using a website for student responses to questions (in lieu of clickers).
- **APPS Online applications**: Apps are online/smart phone applications, in this case, those that allow students to participate although there may not be a method of “grading” as there is for various “clicker” systems. Examples: Twitter, Socrative, Poll Everywhere, Google Apps, Adobe Apps.
Teaching Dimensions Observation Protocol (TDOP)
© 2010, 2014 Board of Regents of the University of Wisconsin System.
TDOP is made available to researchers and educators under a limited educational license and shall not
be copied, modified, or redistributed except for research and teaching purposes. Researchers are
encouraged to customize the TDOP to fit their specific research and institution needs. However, if you
plan on publishing a modification to the TDOP, please indicate that the modification is yours, but do not
change the name of the instrument without prior written consent from the University of Wisconsin-
Madison (UW). This educational license does not include the right to incorporate the TDOP or
modifications in any software without prior written permission from UW. UW makes the TDOP freely
available to researchers in a software application from its Wisconsin Center for Education Research
website.
The TDOP logo is a trademark of the University of Wisconsin System.
Citation for the instrument: Hora, M., & Ferrare, J.. (2014). The Teaching Dimensions
Observation Protocol (TDOP) 2.0. Madison, WI: University of Wisconsin-Madison, Wisconsin
Center for Education Research.
TDOP was largely adapted from Osthoff, E., Clune, W., Ferrare, J., Kretchmar, K., & White, P.
(2009). Implementing immersion: Design, professional development, classroom enactment and learning
effects of an extended science inquiry unit in an urban district. Madison: University of Wisconsin–
Madison, Wisconsin Center for Educational Research.
Thanks to the National Science Foundation for providing support for work on the TDOP
(DRL#0814724, DUE#1224624). Thanks to Amanda Oleson, Jana Bouwma-Gearhart, and other
colleagues for providing assistance with this revision.

All ITEMS MARKED + ARE ADDITIONAL TO THE TDOP PROTOCOL
Taimi Olsen, OTEI, Clemson, 2017