Skip to Content

Biological Sciences Profiles

Harry Kurtz, Jr

Associate Professor
Biological Sciences Department

Office: 151-A Life Sciences Facility
Phone: 864-656-6915
Fax: 864-656-6879

Vita: Download CV

 Educational Background

PhD Bacteriology
University of Idaho 1989

BS Microbiology
The Pennsylvania State University 1984

 Courses Taught

Soil Microbiology (MICR 4100/6100)
Advanced Microbiology Lab 1 (MICR4500/4501)
Understanding Microbiology (BIOL 8470)

 Research Interests

Research in my lab is focused on environmental microbiology, specifically survival of stress. When we examine the world around us, it is possible to see microbial communities living in surprising places. While many of these microbial communities do not live in so-called extreme environments, they still must survive stressful conditions. These conditions include exposure to UV light, desiccation, and nutrient limitation. In many cases, microbes must not only survive these natural stresses, but also in the presence of manmade stressors in the form of xenobiotic compounds (pollutants) that we release into the environment. It is the mechanisms and strategies used by microbes to survive these conditions that my laboratory is interested in understanding. Our examination of these strategies uses several systems to ask the question: What are these microbes producing to survive these conditions and how do they use these materials to survive in these stressful environments?

Our first study system is from the deserts of southeast and south-central Utah. This microbial ecosystem resides in the surfaces of exposed sandstones and is technically a cryptoendolithic microbial community (living within the pores). We have determined that these communities stabilize the surfaces of these sandstones, which are highly erodible. Further work by my group is examining the role of extracellular materials with regard to the binding and stabilization of iron(II). Our hypothesis is that microbes and light reduce iron(III) to iron(II), making it mobile in the environment. The ferrous iron (iron(II)) is then bound by an extracellular polysaccharide (EPS) that binds and stabilizes it, preventing its re-oxidation to ferric iron (iron(III)). Once bound it is then taken up by the surrounding microbial community where it is used in photosynthesis and other metabolic processes. We strongly suspect that other key metals are similarly trapped and currently testing this idea. From an ecological standpoint, the sequestration of metals other than iron by EPS would make sense as this region has very low levels of biogenic metals such as copper and cobalt.

Recently, we have initiated a new series of studies examining the microbial diversity and ecology of South Carolina beaches. With the exception of beaches heavily impacted by large pollution events, little is known regarding the microbial ecology of these systems and the services that they provide to the near shore and estuarine marine ecosystem. New data are showing high levels of inorganic nitrogen compounds and ferrous iron. Microbiologically, we have detected members of the Planctomycetales, specifically those that are likely involved in nitrogen cycling. Ultimately we hope to link beach ecosystems to key ecological processes and issues associated with coastal life. Questions we are actively addressing include: Does the iron found in these beaches serve to fertilize the near shore ecosystem? What is the overall diversity found in a beach ecosystem? Are all SC beaches similar in their microbial diversity profiles? If not, what are the underlying parameters driving these differences? Are there any links (i.e. metals) between beach systems and the development of resistance in problematic bacteria found in the vicinity?


Erik Hammes, Matthew Floyd, and Harry D. Kurtz, Jr. (2013). An Iron(II) Binding EPS and an Assessment of Microbial Diversity in Association with the EPS: Implications for Iron Cycling in the Jurassic Navajo Sandstone Journal of Arid Environments 97:49-55. ePub: htp://

Vijai Elango, Harry D. Kurtz, Jr., Christina Anderson, and David L. Freedman. (2011). Use of γ- hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture. Journal of Hazardous Materials 197:204-210.

Vijai Elango, Harry D. Kurtz, Jr., David L. Freedman. (2011). Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates. Chemosphere 84:247-253.

Huifeng Shan, Harry D. Kurtz, Jr., Nadia Mykytczuk Jack T. Trevors and David L. Freedman. (2010). Anaerobic Biotransformation of High Concentrations of Chloroform in Groundwater by an Enrichment Culture and Two Isolates, Applied and Environmental Microbiology 76:6463-6469

Kurtz, Jr., H. D. and Rosemary Cox. (2010). Microbial biofilm effects on local microconditions (cm scale) in Arid Environments and Their Potential Involvement in Iron Geochemistry, Proceedings of the Learning from the Land: Grand Staircase-Escalante National Monument Science Symposium, September 12-14, 2006, Cedar City, Utah. Published by Grand Staircase-Escalante Partners, UT

Shan, Huifeng, H.D. Kurtz, Jr., and D. L. Freedman. (2010). Evaluation of strategies for anaerobic bioremediation of high concentrations of halomethanes. Water Research 44:1317-1328.

Haddadin, Fu’ad T., Harry Kurtz, and Sarah W. Harcum. (2009). Serine hydroxamate and the transcriptome of high cell density recombinant Escherichia coli MG1655. Applied Biochemistry and Biotechnology 157:124-139 {Online info: DOI 10.1007/s12010-008-8241-0}

Toh, E, H. D. Kurtz, Jr., and Y. V. Brun. (2008). Characterization of the Caulobacter crescentus Holdfast Polysaccharide Biosynthesis Pathway Reveals Significant Redundancy in the Initiating Glycosyltransferase and Polymerase steps. Journal of Bacteriology 190(21):7219-7231