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Abstract. A yield monitoring system for a peanut combine was developed to record harvest data 
from research test plots. The system collects a batch of peanuts from each research plot into a 
weighing bin, weighs the batch, dumps the batch into a duct, and then pneumatically conveys the 
batch to the primary basket. The weighing bin is suspended from load cells connected to a monitor. 
For the conveyance cycle, an electrical control circuit operates a 12 VDC gear motor coupled to a 
hatch in the bottom of the weighing bin. Peanuts are conveyed from the air duct to the primary 
basket using a centrifugal blower driven by a hydraulic motor. A small hopper was included to collect 
samples from each batch for quality analyses. Conventional research plot harvesting required three 
individuals: a tractor operator, someone to bag samples from the harvester and haul sacks, and 
someone to weigh the peanut sacks. The developed system reduced the harvest operation to only 
one individual when quality samples are not required and to two individuals when required. 
Preliminary field trials indicated that the system was successful in collecting, accurately weighing, 
and conveying the peanuts but that additional work is necessary relative to sampling and geo-
referencing data acquisition. 
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Introduction 

Peanut research studies for various treatments and tests are typically conducted in research 
plots. Tests conducted under typical plot studies utilize plot lengths of 7.6 m (25 ft) to 24.4 m (80 
ft) and row widths set to match available harvesting equipment. Modern peanut harvest is 
conducted in two stages: digging/shaking/inverting and combining. In the first stage, a digger-
shaker-inverter digs the peanut plant out of the ground, shakes some of the dirt off of its roots, 
and inverts the plant to lay it in the field with the peanuts and roots facing upwards to dry. After 
sufficient in-field drying time has been provided, which is dependent on variety, maturity, size, 
and environmental conditions, a combine picks the vines up from the field, separates the 
peanuts from the vines, delivers the peanuts to a storage basket, and discharges the vines back 
into the field.  

Harvest of peanut research plots for field trials, coupled with quality sampling and tabulation of 
yields has traditionally been very laborious and time intensive. Research plot studies at 
Clemson University’s Edisto Research and Education Center (EREC) have been harvested in 
recent years using a two-row combine with the delivery tube to the storage basket being 
intercepted by a 180o elbow (U-tube) as seen in Figure 1, allowing all harvested peanuts from a 
particular plot to be directed to a burlap sack for weight tabulation and quality sampling. Such 
method requires two individuals in addition to the tractor operator: one to walk alongside the 
harvester to label, collect, and replace the sacks, and another to weigh and collect quality 
samples from each sack.  

 

Figure 1. U-tube used for attaching burlap sack. 

The development of the yield monitor in this project was directed at reducing the amount of 
labor required for collecting yield data from peanut research plots in addition to providing an 
integrated quality sampling system. Rather than delivering the peanuts to a burlap sack for post-
harvest weight measurement, the total weight harvested from each research plot is collected 
and recorded in the field at the time of harvest by the tractor/combine operator. The components 
used in the system were selected so that a data acquisition system may be included in the 
future in order to record the results from the plots and generate yield maps or link the yield data 
to plot IDs. The yield monitor developed for this report allows for a quality sample to be 
manually collected for additional lab analyses, although in the current prototype sample 



 

3 

collection requires that an individual walk alongside the combine to collect and bag the quality 
samples. Current work is directed at developing an automated sampler, which will reduce the 
number of individuals required for harvest, yield measurement, and sample collection to only 
one person: the tractor/combine operator.  

Although yield monitoring systems have been researched for use on peanut combines (Perry et 
al., 2002; Rains et al., 2005; Thomas et al., 1999; Thomasson et al., 2006; Vellidis et al., 2001), 
no commercially available products currently exist and little work has been done to evaluate 
these technologies for accuracy and reliability if used in research plot studies. Perry et al. (2002) 
report that the PYMS yield monitoring system, which utilizes load cells to weigh the entire 
storage basket, would be best suited for field scale plots (240 m length) as opposed to 
traditional research plots (9 m length). They reported total differences between yield monitor 
weights and truck scale weights of an average of 1.7% with a maximum difference of 7.8%. 
Other studies utilizing the PYMS yield monitoring system (Rains et al., 2005; Vellidis et al., 
2001) reported differences of less than 1% to 3% between PYMS and truck weights, although 
these studies did not evaluate the PYMS system for use in traditional research plot studies. 
Relatively small batch weights from the research test plots require a great deal of accuracy with 
little allowance for errors as a result of time lag and averaging. To put things into perspective, 
the harvesting equipment used at EREC accommodates two-row plots on 91 cm (36 in) row 
widths, which results in, for example, a 12.2 m (40 ft) plot with a yield of 3,744 kg/ha (3,340 
lb/ac) generating a total plot weight of only 8.36 kg (18.4 lb).  

The technology developed under this research was directed at not only being capable of 
reducing the time requirements associated with field labor and data collection, but also at doing 
this with the highest degree of reliability and consistency in measuring yields from the peanut 
research plots. Mass flow sensors such as those utilized in most commercially available cotton 
yield monitors and in some research studies for peanut yield monitors (Rains et al., 2005; 
Thomasson et al., 2006) measure yield as a correlation between sums of mass flow 
measurements and total load weights. Studies indicate that yield data from these sensors can 
vary from loss of calibration over time, especially due to abrasion, foreign material, and dirt 
build-up. Little research exists in evaluating differences in calibration curves for mass flow 
sensors as a function of peanut variety and pod size. For the technology developed under this 
project, load cells were instead selected for use in making batch yield measurements from each 
research plot. The load cells provide a direct correlation to weight with a high degree of 
accuracy, regardless of peanut variety, flow rate, size, or shape.  

Materials and Methods 

The main objective of the project was to develop a system with the ability to accurately monitor 
the weight of peanuts from research plots of predefined size.  The final design needed the ability 
to collect small quality samples of the peanuts from each harvested batch. It was required that 
the weighing system be semi-automated, where the machinery operator had control of when the 
yield weights were being observed and recorded, but actual sequencing of sampling, weighing, 
and conveying was automatic with the simple push of a button by the tractor/combine operator. 
The system needed to be readily adaptable to being reverted to conventional harvest, where the 
yield monitor could be bypassed and peanuts could be conveyed directly into the combine’s 
primary storage basket. Finally, the system was to be designed as a package so that it could be 
installed on different peanut combines with little modification. 
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System Description 

The developed system (Figures 2 and 3) utilized the combine’s existing PTO driven blower and 
delivery tube to convey the harvested peanuts directly into a weighing bin that was situated 
above the combine’s straw walkers and behind its storage basket. The weighing bin was 
suspended from a steel frame by three load cells, which were connected to a monitor displaying 
the weight, located in the cab of the tractor. The floor of the weighing bin was constructed as a 
trap door, whose two hinged doors were actuated using a DC gear motor connected through a 
roller chain drive to a sprocket with an eccentric arm.  

Centrifugal Blower
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Figure 2. Yield monitor configuration from left side of combine. 
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Figure 3. Yield monitor configuration from right side of combine. 
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An electrical control circuit was provided allowing the tractor operator to control the release of 
the peanuts from the weighing bin. At the press of a button by the operator, the trap doors on 
the bottom of the weighing bin opened (Figure 4) and the peanuts were released into a funnel in 
the shape of an inverted pyramidal frustum, concentrating the peanuts into a conveying duct. 
The conveying duct was fitted with a hydraulically driven centrifugal fan and the peanuts 
introduced to this duct were pneumatically transported to the combine’s existing primary storage 
basket. After release of the peanuts to the conveying duct, the trap doors on the weighing bin 
automatically closed in order to accept peanuts from the subsequently harvested plot. At the 
time of full closure of the doors on the weighing bin, an indicator light was provided for the 
machine operator, indicating that it was safe to proceed in harvesting the next research test plot. 

 

Figure 4. Trap doors on bottom of weighing bin, shown 75% open. Note: weighing bin is on its 
side in this image for testing purposes. 

In order to provide a means of collecting a 1,100 - 1,200 g (2.4 – 2.6 lb) sample for quality 
analyses from each plot, a 2,950 cm3 (180 in3) sampling hopper was situated inside the funnel 
as seen in Figure 5. The volume indicated here takes into account an assumed 29 degree angle 
of repose for the peanuts (Akcali et al., 2006). This sampling hopper was positioned so that 
overflow peanuts in excess of its design volume could move around it and into the conveying 
duct below. The cross-section of the sampling hopper was wedge-shaped with a hinged door 
mounted on the side with the lowest elevation. When the door was opened, the quality sample 
was gravity-fed into a sampling bag positioned at the bottom of a chute mounted to the side of 
the combine.  

Design Considerations 

The centrifugal blower used for conveying the peanuts released from the weighing bin to the 
primary storage basket was sized based on bench testing with a Plexiglas test column and an 
oversized fan. One pound of peanuts was introduced into the column and the air intake to the 
fan was dampened until a critical point was reached where about 50% of the peanuts were 
suspended in the column. The minimum air flow rate was quantified by using a Pitot-static tube 
to measure dynamic pressures from 1.6 cm2 (0.25 in2) grid sectors. Bernoulli’s equation was 
then used to estimate average air velocities for each grid sector. Using the estimated average 
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air velocity and cross-sectional area, air flow rates were calculated for each grid sector, as 
shown in Figure 6. The flow rates were summed for the entire test column cross section, giving 
an overall minimum flow rate required of 0.25 m3/s (530 cfm). A radial-blade, direct-drive blower 
with a 31.8 cm (12.5 in) wheel diameter was selected for use, requiring a 1.1 kW (1.5 hp) motor 
capable of turning at 1,725 rpm. The hydraulic motor used to drive the blower was an external 
tooth gear motor with a displacement of 3.18 cm3/rev (0.194 in3/rev). 

 

Figure 5. Sampling hopper positioned inside funnel, underneath weighing bin. 
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Figure 6. Minimum air flow rate measurements from test column. 

In order to accommodate the maximum anticipated amount of peanuts collected from one 
research plot, the system was designed so that the weighing bin had a minimum capacity of 35 
kg (77 lb), which would represent a batch from a 24.4 m (80 ft) long, two-row plot with a yield of 
7,847 kg/ha (7,000 lb/ac). Assuming 400 kg/m3 (25 lb/ft3) peanut density at harvest, the volume 
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of the weighing bin can be calculated to be 0.088 m3 (3.1 ft3). The weighing bin was constructed 
with a cylindrical upper portion where the pneumatically conveyed peanuts were introduced 
along a tangential path with the wall of the bin in order to reduce incidents of shelling and 
peanut damage from impacts. Within the sizing of the weighing bin, its supporting frame, and 
the conveying duct underneath, the overall height of the machine was restricted to 4.1 m (13.5 
ft) for transport purposes. 

The electrical control circuit for the conveyance cycle can be seen in Figure 7. A control box for 
the combine operator was provided in the tractor cab. This box included a momentary push 
button switch, a red light indicating that the conveyance cycle from the weighing hopper to the 
primary storage basket was underway, and a green light indicating that the conveyance cycle 
was complete and harvest of the next plot could proceed. When the operator push button is 
depressed, Relay 1 is energized, the green light on the control box in the tractor cab turns off, 
and the red light turns on. The normally open (NO) contacts on Relay 1 are connected through 
the normally closed contacts on Relay 2 back to the coil on Relay 1 so that Relay 2 acts to hold 
the coil for Relay 1 energized until the coil for Relay 2 is energized. Also at this time, power is 
provided for the gear motor used to open and close the trap doors on the bottom of the weighing 
hopper and the doors begin to open. When the doors are in the fully open position, contacts 
close on the “Doors Open” limit switch and the coil for the “Door Stall” interval timer is 
energized, opening the motor circuit and stalling the doors for a set time period (10 to 20 sec, 
generally) in the fully open position until all peanuts can be emptied from the weighing hopper. 
After this time period has elapsed, power is restored to the gear motor and the doors proceed to 
close. Just prior to full closure, contacts are closed on the “Doors Closed” limit switch, which 
provides a signal to a Delay on Make (DOM) timer, allowing for fine adjustments in position of 
the closed doors and ensuring full closure. After a brief (0.4 sec) time delay, contacts on the 
DOM timer are switched, which energizes the coil for Relay 2, de-energizing the coil for Relay 1, 
eliminating power to the motor and the red light, and restoring power to the green light. In 
summary, when the tractor/combine operator presses the push button switch, the green light 
turns off, the red light turns on, and the trap doors open fully. After stalling for 10 to 20 seconds 
in the fully open position, the trap doors close fully, the red light turns off, and the green light 
turns on. 

 

Figure 7. Electrical control circuit. 
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Results and Discussion 

General observations 

Preliminary field trials indicated that the system was generally successful in collecting, 
accurately weighing, and conveying the peanuts. In some cases, when the trap doors on the 
weighing bin were opened and the peanuts released into the funnel and sampling hopper, the 
rate at which the peanuts moved into the conveying duct was so slow that the peanuts did not 
clear the trap doors prior to their closure. Due to the slow flow of peanuts, some peanuts from 
the plot remained in the weighing hopper when it should have been cleared for harvest of the 
following plot. As a temporary solution, a time delay was imposed on operation of the trap doors 
so that they would pause briefly in the fully open position. This solution proved to be effective 
but time consuming, requiring the operator to wait for up to 40 seconds after pressing the button 
to open the doors and before proceeding to the next plot. Work is currently underway in 
addressing this issue more effectively by redesigning the sampling hopper so that it is less 
obtrusive to peanut flow through the funnel and increasing both the size of the funnel and the 
height of the trap doors above the funnel. 

The sampling hopper described in this paper was moderately effective in collecting a sample for 
quality analyses but it requires redesign for a number of reasons. As indicated above, its size, 
placement, and shape make it restrictive to the flow of peanuts through the funnel, providing 
very little area between it and the inner walls of the funnel through which peanuts can flow. Due 
to space restrictions, the angle of its wedge-shaped base was limited to about 30 degrees. At 
this angle, peanuts would not freely gravity flow out of the hopper when the sampling door was 
opened. As a temporary solution, an electric vibrator was added to the funnel, which helped to 
shake the peanuts out of the sampling hopper. The sampling device described here did not lend 
itself to automated collection of samples from multiple plots and therefore required an individual 
to walk alongside the combine when sampling was taking place. Another issue encountered 
with the sampling hopper was that it could not be easily removed during harvest of plots where 
collection of quality samples was not required. As indicated above, work is currently being 
conducted to address all of these issues through development of an improved sampling system. 

It should be noted that the yield monitor developed here is specifically designed for research 
plot studies and does not lend itself to adaptation for conventional peanut harvest applications. 
Because it weighs each harvested research plot in a batch rather than continuously, requiring 
the operator to stop at the end of each plot, record a weight, and dump the harvested batch, it 
would be impractical for use in commercial peanut operations. However, it could prove to be 
useful in testing and verifying alternative methods of yield monitoring for conventional peanut 
harvest or for evaluating mass flow technologies for use in research plot studies. 

Productivity Analysis 

Using the prior research plot harvest method of a U-tube and a burlap sack, two individuals are 
required during harvest and an additional individual is required to collect the burlap sacks and 
weigh them after harvest. The plot harvest capacity of this system was 30 plots per clock hour 
and 22 plots per labor hour. Using the current yield monitor design instead of the U-tube and 
burlap sack results in a plot harvest capacity of 51 plots per clock hour and 26 plots per labor 
hour. With the modified and fully automated sampling system currently being constructed, the 
time delay at the point where the weighing bin’s doors were fully open can be eliminated and 
collection of the quality samples will occur simultaneously with trap door closure and travel to 
the next plot, requiring no additional time. With such changes the number of individuals required 
for harvest, yield data collection, and quality sample collection will be reduced to one. This 
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system results in a plot harvest capacity of 73 plots per hour and 73 plots per labor hour. A 
summary of the capacities of the three scenarios discussed here can be seen in Figure 8. 

0

10

20

30

40

50

60

70

80

U-tube Current design Modified sampler

Plots per Clock Hour

Plots per Labor Hour

 
Figure 8. Plot harvest capacities of the three described scenarios. 

Conclusion and Recommendations 

Field tests of the yield monitor described in this report were favorable in many respects and 
provided indication of a number of improvements that could be made. The technology 
developed proved to be reliable in collecting yield data through one season of research plot 
study harvest and it successfully eliminated the need for collecting, tagging, transporting, and 
individually weighing burlap sacks of the entire plot study harvests. During these field trials 
confirmation of reported weights was not conducted but standard test weights were measured in 
the weighing bin periodically and the accuracy remained within 1%; further tests of the system’s 
accuracy under field conditions must be conducted. Since the system developed in this study 
was directed at use specifically in traditional research plot studies, an integral quality sampling 
system was included on the prototype. Observations made during field trials allowed for an 
improved design with incorporation of a fully automated quality sampling system. As currently 
configured, the yield monitor increases plot harvest capacity from 22 plots per labor hour to 26 
plots per labor hour and reduces the number of individuals required for harvest of the test plots 
from three to one. After completion of the required modifications realized in preliminary tests, 
the plot harvest capacity will increase to 73 plots per labor hour and require only one individual 
to harvest the test plots. Future work planned for the yield monitor developed in this study 
includes:  

 automation of sampling system,  

 development of software to automatically record and associate yield data to plot number 
through GPS location,  

 development of software to print barcoded labels for quality sample bags at the automated 
sampler for more efficient postharvest quality sample analysis, 

 use of yield monitor to evaluate the practicality for use of alternative yield monitoring 
techniques for use in research plot studies (e.g., mass flow sensing) 
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 field trials directed at better quantifying field capacities with the previous U-tube harvest 
method relative to those when using the yield monitor. 
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