Joe Mari Maja

Research Sensor Engineer
Research Scientist
Agricultural Sciences Department, Edisto Research and Education Center

Office: 64 Research Road, Blackville, SC 29
Phone: 803-284-3343
Email: JMAJA@clemson.edu
Vita: Download CV
Personal Website: http://www.iad4sc.com

 

 Educational Background

Ph.D. Information Science
Tohoku University 2003

MEng Computer Engineering
University of San Carlos 1997

MSc Information Science
Tohoku University 2000

BSc Computer Engineering
University of San Carlos 1991

 Profile

My main responsibility is to work with REC researchers and SC growers (peanuts, cotton, soybeans and other root crops) in developing new technology to address current problems and future potential problems. I have developed different technologies to optimize farm operations. Some of the technologies that are currently on the testing phase: Intelligent Farm Controller (iFc) – Small size controller that runs its own small operating system and can be configured using terminal program. This will be used as the main coordinator for the Intelligent Pivot System but can also be used for other automation project; Pups – a small board (smaller than SC driver’s license) that transmits data from three different sensors into another controller e.g. iFc or to a computer. This will be used as a part of the intelligent pivot system project; Intelligent Spray Controller (iSc) – Spray controller powered by iFc that can control individual nozzles using pulse width modulation at 10 Hz; Penetrometer Board – small-sized board that incorporates GPS, Load Cell, Potentiometer and a trigger into one platform and stream all gathered information through either wired, e.g., USB or wireless (future) through Bluetooth or Zigbee.

 Research Interests

My current position is as a Research Sensor Engineer at Edisto REC in Blackville where I oversee the Sensor and Automation Laboratory. A major focus of my programmatic effort has been on emerging technologies, small unmanned aircraft systems (sUAS) and robotics. These collective efforts attempt to merge unmanned systems with other appropriate technologies to benefit a variety of agricultural disciplines. As a result of my background & pioneering research efforts with sUAS, I was honored to be selected by Dr. George Askew as the UAV pilot for Clemson University.

I feel that a strength of my research program lies in the breadth of subject areas covered and the extent of internal and external collaborations. Over the past three years, I have been involved in research projects in the areas of specialty crops, animal science, crop science and precision agriculture. Research projects have focused on counting plants and tracking animals in open-field environments, crop health monitoring (water stress, disease), automation, small unmanned aerial vehicle applications for agriculture, and sensors (soil moisture, tissue starch content, defoliation) development.

 Extension and Outreach

Even though my current appointment is 100% research, I feel it is important to extend this information to stakeholders. Over the past three years, I have actively participated in the eXtension UAS in Agriculture Learning Network and the Southern Risk Management Education Center (SRMEC) sUAS workshops for agricultural producers. I have also met frequently with producers who want to implement sUAS into their agricultural operations. In the past two years, I have co-authored three Extension publications on sUAS, one of which was awarded a regional Blue Ribbon Extension Publication Award in 2018. To assist stakeholders in understanding technology topics, I have created 22 YouTube tutorials and two manuals ranging from the use of sUAS, sensors, and software

 Publications

● Maja, JM., and Robbins, J. (2018) Controlling irrigation in a container nursery using IoT. AIMS Agriculture and Food, 2018, 3(3):205-215. https://doi.org/10.3934/agrfood.2018.3.205
● Fox, J., Khalilian, A., Han, Y., Williams, P., Nafchi, A., Maja, J., Marshall, M. and Barnes, E. (2018) Real-Time, Variable-Depth Tillage for Managing Soil Compaction in Cotton Production. Open Journal of Soil Science, 8, 147-161. https://doi.org/10.4236/ojss.2018.86012
● Nafchi, A.M., Maja, J.M., Khalilian, A., Han, Y., Rogers, N., Payero, J.O., Marshall, M.W., Williams, P.B. and Fox, J. (2017) An Electro-Mechanical Controller for Adjusting Piston Pump Stroke On-the-Go for Site-Specific Application of Crop Nutrients. Agricultural Sciences, Vol.8, No. 9, pp. 949-959. https://doi.org/10.4236/as.2017.89069
● Khalilian, A., Rogers, N.G., Williams, P.B., Han, Y.J., Nafchi, A.M., Maja, J.M., Marshall, M.W. and Payero, J.O. (2017) Sensor-Based Algorithm for Mid-Season Nitrogen Application in Corn. Open Journal of Soil Science , 7, 278-287. https://doi.org/10.4236/ojss.2017.710020
● Khalilian, Ahmad, Young Han, Joe M Maja, Michael Marshall, Ali Mirzakhani-Nafchi, Jose Payero, Daniel Anco. 2017. Development of GPS-based multi-channel controllers for research plot pesticide applicators; Journal of Agricultural Sciences, 8, pp.302-315. https://doi.org/10.4236/as.2017.84022
● Marshall Michael, Phillip Williams, Ali Mirzakhani-Nafchi, Joe Mari Maja, Jose Payero, John Mueller, and Ahmad Khalilian. 2016. Influence of Tillage and Deep Rooted Winter Cover Crops on Soil Properties, Pests, and Yield Responses in Cotton; Journal of Soil Sciences, Vol 6 No. 10 pp. 149-158. https://dx.doi.org/10.4236/ojss.2016.610015
● Privette III, C.V., Khalilian, A., Bridges, W., Katzberg, S., Torres, O., Han, Y.J., Maja, J.M. and Qiao, X. 2016. Relationship of Soil Moisture and Reflected GPS Signal Strength. Advances in Remote Sensing.,5, 18-27, 2016 http://dx.doi.org/10.4236/ars.2016.51002
● L.R. Khot, J.M. Maja, J.M. Campoy, C. Wellington, A. Al-Jumaili. 2014. Evaluation of Deposition and Coverage by an Air-Assisted Sprayer and Two Air-Blast Sprayers in a Citrus Orchard.. Transactions of the ASABE 57(4):1007-1013, 2014.
● R. Shamshiri, R. Ehsani, J. M. Maja, F. M. Roka. 2013. Determining Machine Efficiency Parameters for a Citrus Canopy Shaker Using Yield Monitor Data.. Applied Engineering in Agriculture. Vol. 29(1): 33-41, 2013.
● Sankaran S, Maja JM, Buchanon S, Ehsani R. 2013. Huanglongbing (Citrus Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques. Sensors. 2013; 13(2):2117-2130.
● PA Larbi, R Ehsani, M Salyani, JM Maja, A Mishra, JC Neto. 2013. Multispectral-based leaf detection system for spot sprayer application to control citrus psyllids. Biosystems Engineering 116 (4), 509-517
● F. Garcia Ruiz, S. Sankaran, J.M. Maja, W.S. Lee, J. Rasmussen, R. Ehsani. 2012. Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture 91(2013) 106-115. http://dx.doi.org/10.1016/j.compag.2012.12.002
● Lav R. Khot, Sindhuja Sankaran, Joe Mari Maja, Reza Ehsani, Edmund W. Schuster. 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection, Volume 35, May 2012, Pages 64-70. https://doi.org/10.1016/j.cropro.2012.01.007
● Sindhuja Sankaran, Ashish Mishra, Joe Mari Maja and Reza Ehsani. 2011. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards, Elsevier Journal of Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2011.03
● JM. Maja and Ehsani, R. 2010. Development of a Yield Monitoring System for Citrus Mechanical Harvesting Machine, Journal of Precision Agriculture. https://doi.org/10.1007/s11119-009-9141-1
● Grift, T., Ehsani, R., Maja, JM, and Zhong, D. 2009. Two approaches to realize real-time yield monitoring of citrus fruits, Elsevier Journal of Computers and Electronics in Agriculture. 65. 186-191.

 Links

Intelligent Agritronix Devices
Edisto REC Website
My APT Link
Google Scholar